Spaces:
Running
on
Zero
Apply Net
apply_net
is a tool to print or visualize DensePose results on a set of images.
It has two modes: dump
to save DensePose model results to a pickle file
and show
to visualize them on images.
The image.jpg
file that is used as an example in this doc can be found here
Dump Mode
The general command form is:
python apply_net.py dump [-h] [-v] [--output <dump_file>] <config> <model> <input>
There are three mandatory arguments:
<config>
, configuration file for a given model;<model>
, model file with trained parameters<input>
, input image file name, pattern or folder
One can additionally provide --output
argument to define the output file name,
which defaults to output.pkl
.
Examples:
- Dump results of the R_50_FPN_s1x DensePose model for images in a folder
images
to filedump.pkl
:
python apply_net.py dump configs/densepose_rcnn_R_50_FPN_s1x.yaml \
https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl \
images --output dump.pkl -v
- Dump results of the R_50_FPN_s1x DensePose model for images with file name matching a pattern
image*.jpg
to fileresults.pkl
:
python apply_net.py dump configs/densepose_rcnn_R_50_FPN_s1x.yaml \
https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl \
"image*.jpg" --output results.pkl -v
If you want to load the pickle file generated by the above command:
# make sure DensePose is in your PYTHONPATH, or use the following line to add it:
sys.path.append("/your_detectron2_path/detectron2_repo/projects/DensePose/")
f = open('/your_result_path/results.pkl', 'rb')
data = pickle.load(f)
The file results.pkl
contains the list of results per image, for each image the result is a dictionary.
If you use a IUV model, the dumped data will have the following format:
data: [{'file_name': '/your_path/image1.jpg',
'scores': tensor([0.9884]),
'pred_boxes_XYXY': tensor([[ 69.6114, 0.0000, 706.9797, 706.0000]]),
'pred_densepose': [DensePoseChartResultWithConfidences(labels=tensor(...), uv=tensor(...), sigma_1=None,
sigma_2=None, kappa_u=None, kappa_v=None, fine_segm_confidence=None, coarse_segm_confidence=None),
DensePoseChartResultWithConfidences, ...]
}
{'file_name': '/your_path/image2.jpg',
'scores': tensor([0.9999, 0.5373, 0.3991]),
'pred_boxes_XYXY': tensor([[ 59.5734, 7.7535, 579.9311, 932.3619],
[612.9418, 686.1254, 612.9999, 704.6053],
[164.5081, 407.4034, 598.3944, 920.4266]]),
'pred_densepose': [DensePoseChartResultWithConfidences(labels=tensor(...), uv=tensor(...), sigma_1=None,
sigma_2=None, kappa_u=None, kappa_v=None, fine_segm_confidence=None, coarse_segm_confidence=None),
DensePoseChartResultWithConfidences, ...]
}]
DensePoseChartResultWithConfidences
contains the following fields:
labels
- a tensor of size[H, W]
of typetorch.long
which contains fine segmentation labels (previously calledI
)uv
- a tensor of size[2, H, W]
of typetorch.float
which containsU
andV
coordinates- various optional confidence-related fields (
sigma_1
,sigma_2
,kappa_u
,kappa_v
,fine_segm_confidence
,coarse_segm_confidence
)
If you use a CSE model, the dumped data will have the following format:
data: [{'file_name': '/your_path/image1.jpg',
'scores': tensor([0.9984, 0.9961]),
'pred_boxes_XYXY': tensor([[480.0093, 461.0796, 698.3614, 696.1011],
[78.1589, 168.6614, 307.1287, 653.8522]]),
'pred_densepose': DensePoseEmbeddingPredictorOutput(embedding=tensor(...), coarse_segm=tensor(...))}
{'file_name': '/your_path/image2.jpg',
'scores': tensor([0.9189, 0.9491]),
'pred_boxes_XYXY': tensor([[734.9685, 534.2003, 287.3923, 254.8859],
[434.2853, 765.1219, 132.1029, 867.9283]]),
'pred_densepose': DensePoseEmbeddingPredictorOutput(embedding=tensor(...), coarse_segm=tensor(...))}]
DensePoseEmbeddingPredictorOutput
contains the following fields:
embedding
- a tensor of size[N, D, sz, sz]
of typetorch.float
, which contains embeddings of sizeD
of theN
detections in the imagecoarse_segm
- a tensor of size[N, 2, sz, sz]
of typetorch.float
which contains segmentation scores of theN
detections in the image; e.g. a mask can be obtained bycoarse_segm.argmax(dim=1)
sz
is a fixed size for the tensors; you can resize them to the size of the bounding box, if needed
We can use the following code, to parse the outputs of the first detected instance on the first image (IUV model).
img_id, instance_id = 0, 0 # Look at the first image and the first detected instance
bbox_xyxy = data[img_id]['pred_boxes_XYXY'][instance_id]
result = data[img_id]['pred_densepose'][instance_id]
uv = result.uv
The array bbox_xyxy
contains (x0, y0, x1, y1) of the bounding box.
Visualization Mode
The general command form is:
python apply_net.py show [-h] [-v] [--min_score <score>] [--nms_thresh <threshold>] [--output <image_file>] <config> <model> <input> <visualizations>
There are four mandatory arguments:
<config>
, configuration file for a given model;<model>
, model file with trained parameters<input>
, input image file name, pattern or folder<visualizations>
, visualizations specifier; currently available visualizations are:bbox
- bounding boxes of detected persons;dp_segm
- segmentation masks for detected persons;dp_u
- each body part is colored according to the estimated values of the U coordinate in part parameterization;dp_v
- each body part is colored according to the estimated values of the V coordinate in part parameterization;dp_contour
- plots contours with color-coded U and V coordinates;dp_iuv_texture
- transfers the texture from a given texture image file to detected instances, in IUV mode;dp_vertex
- plots the rainbow visualization of the closest vertices prediction for a given mesh, in CSE mode;dp_cse_texture
- transfers the texture from a given list of texture image files (one from each human or animal mesh) to detected instances, in CSE mode
One can additionally provide the following optional arguments:
--min_score
to only show detections with sufficient scores that are not lower than provided value--nms_thresh
to additionally apply non-maximum suppression to detections at a given threshold--output
to define visualization file name template, which defaults tooutput.png
. To distinguish output file names for different images, the tool appends 1-based entry index, e.g. output.0001.png, output.0002.png, etc...--texture_atlas
to define the texture atlas image for IUV texture transfer--texture_atlases_map
to define the texture atlas images map (a dictionary{mesh name: texture atlas image}
) for CSE texture transfer
The following examples show how to output results of a DensePose model
with ResNet-50 FPN backbone using different visualizations for image image.jpg
:
- Show bounding box and segmentation:
python apply_net.py show configs/densepose_rcnn_R_50_FPN_s1x.yaml \
https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl \
image.jpg bbox,dp_segm -v
- Show bounding box and estimated U coordinates for body parts:
python apply_net.py show configs/densepose_rcnn_R_50_FPN_s1x.yaml \
https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl \
image.jpg bbox,dp_u -v
- Show bounding box and estimated V coordinates for body parts:
python apply_net.py show configs/densepose_rcnn_R_50_FPN_s1x.yaml \
https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl \
image.jpg bbox,dp_v -v
- Show bounding box and estimated U and V coordinates via contour plots:
python apply_net.py show configs/densepose_rcnn_R_50_FPN_s1x.yaml \
https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl \
image.jpg dp_contour,bbox -v
- Show bounding box and texture transfer:
python apply_net.py show configs/densepose_rcnn_R_50_FPN_s1x.yaml \
https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl \
image.jpg dp_iuv_texture,bbox --texture_atlas texture_from_SURREAL.jpg -v
- Show bounding box and CSE rainbow visualization:
python apply_net.py show configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml \
https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_s1x/251155172/model_final_c4ea5f.pkl \
image.jpg dp_vertex,bbox -v
- Show bounding box and CSE texture transfer:
python apply_net.py show configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml \
https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_s1x/251155172/model_final_c4ea5f.pkl \
image.jpg dp_cse_texture,bbox --texture_atlases_map '{"smpl_27554": "smpl_uvSnapshot_colors.jpg"}' -v
The texture files can be found in the doc/images
folder