Spaces:
Running
on
Zero
Running
on
Zero
Pointly-Supervised Instance Segmentation
Bowen Cheng, Omkar Parkhi, Alexander Kirillov
Data preparation
Please follow these steps to prepare your datasets:
- Follow official Detectron2 instruction to prepare COCO dataset. Set up
DETECTRON2_DATASETS
environment variable to the location of your Detectron2 dataset. - Generate 10-points annotations for COCO by running:
python tools/prepare_coco_point_annotations_without_masks.py 10
Training
To train a model with 8 GPUs run:
python train_net.py --config-file configs/mask_rcnn_R_50_FPN_3x_point_sup_point_aug_coco.yaml --num-gpus 8
Evaluation
Model evaluation can be done similarly:
python train_net.py --config-file configs/mask_rcnn_R_50_FPN_3x_point_sup_point_aug_coco.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint
Citing Pointly-Supervised Instance Segmentation
If you use PointSup, please use the following BibTeX entry.
@article{cheng2021pointly,
title={Pointly-Supervised Instance Segmentation},
author={Bowen Cheng and Omkar Parkhi and Alexander Kirillov},
journal={arXiv},
year={2021}
}