Spaces:
Running
on
Zero
Running
on
Zero
# Pointly-Supervised Instance Segmentation | |
Bowen Cheng, Omkar Parkhi, Alexander Kirillov | |
[[`arXiv`](https://arxiv.org/abs/2104.06404)] [[`Project`](https://bowenc0221.github.io/point-sup)] [[`BibTeX`](#CitingPointSup)] | |
<div align="center"> | |
<img src="https://bowenc0221.github.io/images/cheng2021pointly.png" width="50%" height="50%"/> | |
</div><br/> | |
## Data preparation | |
Please follow these steps to prepare your datasets: | |
1. Follow official Detectron2 instruction to prepare COCO dataset. Set up `DETECTRON2_DATASETS` environment variable to the location of your Detectron2 dataset. | |
2. Generate 10-points annotations for COCO by running: `python tools/prepare_coco_point_annotations_without_masks.py 10` | |
## Training | |
To train a model with 8 GPUs run: | |
```bash | |
python train_net.py --config-file configs/mask_rcnn_R_50_FPN_3x_point_sup_point_aug_coco.yaml --num-gpus 8 | |
``` | |
## Evaluation | |
Model evaluation can be done similarly: | |
```bash | |
python train_net.py --config-file configs/mask_rcnn_R_50_FPN_3x_point_sup_point_aug_coco.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint | |
``` | |
## <a name="CitingPointSup"></a>Citing Pointly-Supervised Instance Segmentation | |
If you use PointSup, please use the following BibTeX entry. | |
```BibTeX | |
@article{cheng2021pointly, | |
title={Pointly-Supervised Instance Segmentation}, | |
author={Bowen Cheng and Omkar Parkhi and Alexander Kirillov}, | |
journal={arXiv}, | |
year={2021} | |
} | |
``` | |