Spaces:
Running
on
Zero
TensorMask in Detectron2
A Foundation for Dense Object Segmentation
Xinlei Chen, Ross Girshick, Kaiming He, Piotr DollΓ‘r
In this repository, we release code for TensorMask in Detectron2. TensorMask is a dense sliding-window instance segmentation framework that, for the first time, achieves results close to the well-developed Mask R-CNN framework -- both qualitatively and quantitatively. It establishes a conceptually complementary direction for object instance segmentation research.
Installation
First install Detectron2 following the documentation and
setup the dataset. Then compile the TensorMask-specific op (swap_align2nat
):
pip install -e /path/to/detectron2/projects/TensorMask
Training
To train a model, run:
python /path/to/detectron2/projects/TensorMask/train_net.py --config-file <config.yaml>
For example, to launch TensorMask BiPyramid training (1x schedule) with ResNet-50 backbone on 8 GPUs, one should execute:
python /path/to/detectron2/projects/TensorMask/train_net.py --config-file configs/tensormask_R_50_FPN_1x.yaml --num-gpus 8
Evaluation
Model evaluation can be done similarly (6x schedule with scale augmentation):
python /path/to/detectron2/projects/TensorMask/train_net.py --config-file configs/tensormask_R_50_FPN_6x.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint
Pretrained Models
Backbone | lr sched | AP box | AP mask | download |
---|---|---|---|---|
R50 | 1x | 37.6 | 32.4 | model | metrics |
R50 | 6x | 41.4 | 35.8 | model | metrics |
Citing TensorMask
If you use TensorMask, please use the following BibTeX entry.
@InProceedings{chen2019tensormask,
title={Tensormask: A Foundation for Dense Object Segmentation},
author={Chen, Xinlei and Girshick, Ross and He, Kaiming and Doll{\'a}r, Piotr},
journal={The International Conference on Computer Vision (ICCV)},
year={2019}
}