Spaces:
Running
on
Zero
Running
on
Zero
# TensorMask in Detectron2 | |
**A Foundation for Dense Object Segmentation** | |
Xinlei Chen, Ross Girshick, Kaiming He, Piotr Dollár | |
[[`arXiv`](https://arxiv.org/abs/1903.12174)] [[`BibTeX`](#CitingTensorMask)] | |
<div align="center"> | |
<img src="http://xinleic.xyz/images/tmask.png" width="700px" /> | |
</div> | |
In this repository, we release code for TensorMask in Detectron2. | |
TensorMask is a dense sliding-window instance segmentation framework that, for the first time, achieves results close to the well-developed Mask R-CNN framework -- both qualitatively and quantitatively. It establishes a conceptually complementary direction for object instance segmentation research. | |
## Installation | |
First install Detectron2 following the [documentation](https://detectron2.readthedocs.io/tutorials/install.html) and | |
[setup the dataset](../../datasets). Then compile the TensorMask-specific op (`swap_align2nat`): | |
```bash | |
pip install -e /path/to/detectron2/projects/TensorMask | |
``` | |
## Training | |
To train a model, run: | |
```bash | |
python /path/to/detectron2/projects/TensorMask/train_net.py --config-file <config.yaml> | |
``` | |
For example, to launch TensorMask BiPyramid training (1x schedule) with ResNet-50 backbone on 8 GPUs, | |
one should execute: | |
```bash | |
python /path/to/detectron2/projects/TensorMask/train_net.py --config-file configs/tensormask_R_50_FPN_1x.yaml --num-gpus 8 | |
``` | |
## Evaluation | |
Model evaluation can be done similarly (6x schedule with scale augmentation): | |
```bash | |
python /path/to/detectron2/projects/TensorMask/train_net.py --config-file configs/tensormask_R_50_FPN_6x.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint | |
``` | |
# Pretrained Models | |
| Backbone | lr sched | AP box | AP mask | download | | |
| -------- | -------- | -- | --- | -------- | | |
| R50 | 1x | 37.6 | 32.4 | <a href="https://dl.fbaipublicfiles.com/detectron2/TensorMask/tensormask_R_50_FPN_1x/152549419/model_final_8f325c.pkl">model</a> \| <a href="https://dl.fbaipublicfiles.com/detectron2/TensorMask/tensormask_R_50_FPN_1x/152549419/metrics.json">metrics</a> | | |
| R50 | 6x | 41.4 | 35.8 | <a href="https://dl.fbaipublicfiles.com/detectron2/TensorMask/tensormask_R_50_FPN_6x/153538791/model_final_e8df31.pkl">model</a> \| <a href="https://dl.fbaipublicfiles.com/detectron2/TensorMask/tensormask_R_50_FPN_6x/153538791/metrics.json">metrics</a> | | |
## <a name="CitingTensorMask"></a>Citing TensorMask | |
If you use TensorMask, please use the following BibTeX entry. | |
``` | |
@InProceedings{chen2019tensormask, | |
title={Tensormask: A Foundation for Dense Object Segmentation}, | |
author={Chen, Xinlei and Girshick, Ross and He, Kaiming and Doll{\'a}r, Piotr}, | |
journal={The International Conference on Computer Vision (ICCV)}, | |
year={2019} | |
} | |
``` | |