File size: 5,059 Bytes
fd37dfd
 
 
 
 
50aad7c
fd37dfd
2b0ad9d
4f13506
2b0ad9d
fd37dfd
fc40086
 
 
bd88d92
2435dc7
fc40086
2435dc7
4f13506
c61ab81
 
 
4f13506
c61ab81
 
 
a864a25
c61ab81
 
 
a864a25
c61ab81
 
 
a864a25
 
 
 
c61ab81
2435dc7
fea3170
f69cfe5
 
 
 
fc40086
c61ab81
a864a25
c61ab81
 
a864a25
 
f69cfe5
a864a25
2435dc7
 
 
f69cfe5
 
 
 
 
 
 
 
 
 
 
2435dc7
fc40086
 
 
 
 
 
 
 
 
f69cfe5
 
 
c61ab81
f69cfe5
 
 
 
 
 
 
 
a864a25
 
 
f69cfe5
 
 
 
 
0d0421b
f69cfe5
 
 
 
fea3170
c61ab81
fea3170
f69cfe5
 
 
 
fea3170
f69cfe5
 
 
 
 
 
 
 
 
 
 
 
 
 
a864a25
 
f69cfe5
 
 
 
 
 
fea3170
f69cfe5
 
 
fea3170
f69cfe5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# import gradio as gr

# gr.Interface.load("models/rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset").launch()


import gradio as gr
import os
import transformers
from transformers import pipeline, WhisperForConditionalGeneration, WhisperTokenizer, WhisperFeatureExtractor
import time

# def greet_from_secret(ignored_param):
#     name = os.environ.get('TOKEN')
#     return 


auth_token = os.environ.get('TOKEN')


M1 = "rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset"
M2 = "rohitp1/dgx2_whisper_small_finetune_teacher_babble_noise_libri_360_hours_50_epochs_batch_8"
M3 = "rohitp1/subhadeep_whisper_small_finetune_teacher_no_noise_libri_360_hours_100_epochs_batch_8"

model1 = WhisperForConditionalGeneration.from_pretrained(M1, use_auth_token=auth_token)
tokenizer1 = WhisperTokenizer.from_pretrained(M1, use_auth_token=auth_token)
feat_ext1 = WhisperFeatureExtractor.from_pretrained(M1, use_auth_token=auth_token)

model2 = WhisperForConditionalGeneration.from_pretrained(M2, use_auth_token=auth_token)
tokenizer2 = WhisperTokenizer.from_pretrained(M2, use_auth_token=auth_token)
feat_ext2 = WhisperFeatureExtractor.from_pretrained(M2, use_auth_token=auth_token)

model3 = WhisperForConditionalGeneration.from_pretrained(M3, use_auth_token=auth_token)
tokenizer3 = WhisperTokenizer.from_pretrained(M3, use_auth_token=auth_token)
feat_ext3 = WhisperFeatureExtractor.from_pretrained(M3, use_auth_token=auth_token)


p1 = pipeline('automatic-speech-recognition', model=model1, tokenizer=tokenizer1, feature_extractor=feat_ext1)
p2 = pipeline('automatic-speech-recognition', model=model2, tokenizer=tokenizer2, feature_extractor=feat_ext2)
p3 = pipeline('automatic-speech-recognition', model=model3, tokenizer=tokenizer3, feature_extractor=feat_ext3)

def transcribe(mic_input, upl_input, model_type):
    if mic_input:
        audio = mic_input
    else:
        audio = upl_input
    time.sleep(3)
    if model_type == 'NoisyFinetuned':
        text = p2(audio)["text"]
    elif model_type == 'CleanFinetuned':
        text = p3(audio)["text"]
    else:
        text = p1(audio)["text"]
    # state = text + " "
    return text



# gr.Interface(
#     fn=transcribe, 
#     inputs=[
#         gr.inputs.Audio(source="microphone", type="filepath"),
#         'state'
#     ],
#     outputs=[
#         "textbox",
#         "state"
#     ],
#     live=False).launch()


# demo = gr.load(
#     "huggingface/rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset",
#     title="Speech-to-text",
#     inputs="mic",
#     description="Let me try to guess what you're saying!",
#     api_key="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"
# )

# demo.launch()

def clear_inputs_and_outputs():
    return [None, None, "CleanFinetuned", None]

# Main function
if __name__ == "__main__":
    demo = gr.Blocks()

    with demo:
        gr.Markdown(
            """
            <center><h1> Noise Robust English Automatic Speech Recognition LibriSpeech Dataset</h1></center> \
            This space is a demo of an English ASR model using Huggingface.<br> \
    In this space, you can record your voice or upload a wav file and the model will predict the text spoken in the audio<br><br>
            """
        )
        with gr.Row():
            ## Input
            with gr.Column():
                mic_input = gr.Audio(source="microphone", type="filepath", label="Record your own voice")
                upl_input = gr.Audio(
                    source="upload", type="filepath", label="Upload a wav file"
                )

                with gr.Row():
                    model_type = gr.inputs.Dropdown(["RobustDistillation", "NoisyFinetuned", "CleanFinetuned"], label='Model Type')

                with gr.Row():
                    clr_btn = gr.Button(value="Clear", variant="secondary")
                    prd_btn = gr.Button(value="Predict")


            # Outputs
            with gr.Column():
                lbl_output = gr.Label(label="Top Predictions")
                # with gr.Group():
                #     gr.Markdown("<center>Prediction per time slot</center>")
                #     plt_output = gr.Plot(
                #         label="Prediction per time slot", show_label=False
                #     )

        # Credits
        with gr.Row():
            gr.Markdown(
                """
                <h4>Credits</h4>
                Author:  Rohit Prasad <br>
                Check out the model <a href="https://huggingface.co/rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset">here</a>
                """
            )

        clr_btn.click(
            fn=clear_inputs_and_outputs,
            inputs=[],
            outputs=[mic_input, upl_input, model_type, lbl_output],
        )
        prd_btn.click(
            fn=transcribe,
            inputs=[mic_input, upl_input, model_type],
            outputs=[lbl_output],
        )

    demo.launch(debug=True)