Spaces:
Runtime error
Runtime error
File size: 5,059 Bytes
fd37dfd 50aad7c fd37dfd 2b0ad9d 4f13506 2b0ad9d fd37dfd fc40086 bd88d92 2435dc7 fc40086 2435dc7 4f13506 c61ab81 4f13506 c61ab81 a864a25 c61ab81 a864a25 c61ab81 a864a25 c61ab81 2435dc7 fea3170 f69cfe5 fc40086 c61ab81 a864a25 c61ab81 a864a25 f69cfe5 a864a25 2435dc7 f69cfe5 2435dc7 fc40086 f69cfe5 c61ab81 f69cfe5 a864a25 f69cfe5 0d0421b f69cfe5 fea3170 c61ab81 fea3170 f69cfe5 fea3170 f69cfe5 a864a25 f69cfe5 fea3170 f69cfe5 fea3170 f69cfe5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
# import gradio as gr
# gr.Interface.load("models/rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset").launch()
import gradio as gr
import os
import transformers
from transformers import pipeline, WhisperForConditionalGeneration, WhisperTokenizer, WhisperFeatureExtractor
import time
# def greet_from_secret(ignored_param):
# name = os.environ.get('TOKEN')
# return
auth_token = os.environ.get('TOKEN')
M1 = "rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset"
M2 = "rohitp1/dgx2_whisper_small_finetune_teacher_babble_noise_libri_360_hours_50_epochs_batch_8"
M3 = "rohitp1/subhadeep_whisper_small_finetune_teacher_no_noise_libri_360_hours_100_epochs_batch_8"
model1 = WhisperForConditionalGeneration.from_pretrained(M1, use_auth_token=auth_token)
tokenizer1 = WhisperTokenizer.from_pretrained(M1, use_auth_token=auth_token)
feat_ext1 = WhisperFeatureExtractor.from_pretrained(M1, use_auth_token=auth_token)
model2 = WhisperForConditionalGeneration.from_pretrained(M2, use_auth_token=auth_token)
tokenizer2 = WhisperTokenizer.from_pretrained(M2, use_auth_token=auth_token)
feat_ext2 = WhisperFeatureExtractor.from_pretrained(M2, use_auth_token=auth_token)
model3 = WhisperForConditionalGeneration.from_pretrained(M3, use_auth_token=auth_token)
tokenizer3 = WhisperTokenizer.from_pretrained(M3, use_auth_token=auth_token)
feat_ext3 = WhisperFeatureExtractor.from_pretrained(M3, use_auth_token=auth_token)
p1 = pipeline('automatic-speech-recognition', model=model1, tokenizer=tokenizer1, feature_extractor=feat_ext1)
p2 = pipeline('automatic-speech-recognition', model=model2, tokenizer=tokenizer2, feature_extractor=feat_ext2)
p3 = pipeline('automatic-speech-recognition', model=model3, tokenizer=tokenizer3, feature_extractor=feat_ext3)
def transcribe(mic_input, upl_input, model_type):
if mic_input:
audio = mic_input
else:
audio = upl_input
time.sleep(3)
if model_type == 'NoisyFinetuned':
text = p2(audio)["text"]
elif model_type == 'CleanFinetuned':
text = p3(audio)["text"]
else:
text = p1(audio)["text"]
# state = text + " "
return text
# gr.Interface(
# fn=transcribe,
# inputs=[
# gr.inputs.Audio(source="microphone", type="filepath"),
# 'state'
# ],
# outputs=[
# "textbox",
# "state"
# ],
# live=False).launch()
# demo = gr.load(
# "huggingface/rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset",
# title="Speech-to-text",
# inputs="mic",
# description="Let me try to guess what you're saying!",
# api_key="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"
# )
# demo.launch()
def clear_inputs_and_outputs():
return [None, None, "CleanFinetuned", None]
# Main function
if __name__ == "__main__":
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
<center><h1> Noise Robust English Automatic Speech Recognition LibriSpeech Dataset</h1></center> \
This space is a demo of an English ASR model using Huggingface.<br> \
In this space, you can record your voice or upload a wav file and the model will predict the text spoken in the audio<br><br>
"""
)
with gr.Row():
## Input
with gr.Column():
mic_input = gr.Audio(source="microphone", type="filepath", label="Record your own voice")
upl_input = gr.Audio(
source="upload", type="filepath", label="Upload a wav file"
)
with gr.Row():
model_type = gr.inputs.Dropdown(["RobustDistillation", "NoisyFinetuned", "CleanFinetuned"], label='Model Type')
with gr.Row():
clr_btn = gr.Button(value="Clear", variant="secondary")
prd_btn = gr.Button(value="Predict")
# Outputs
with gr.Column():
lbl_output = gr.Label(label="Top Predictions")
# with gr.Group():
# gr.Markdown("<center>Prediction per time slot</center>")
# plt_output = gr.Plot(
# label="Prediction per time slot", show_label=False
# )
# Credits
with gr.Row():
gr.Markdown(
"""
<h4>Credits</h4>
Author: Rohit Prasad <br>
Check out the model <a href="https://huggingface.co/rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset">here</a>
"""
)
clr_btn.click(
fn=clear_inputs_and_outputs,
inputs=[],
outputs=[mic_input, upl_input, model_type, lbl_output],
)
prd_btn.click(
fn=transcribe,
inputs=[mic_input, upl_input, model_type],
outputs=[lbl_output],
)
demo.launch(debug=True)
|