Spaces:
Runtime error
Runtime error
File size: 2,394 Bytes
8b644df d1bab71 18ef497 d1bab71 bbcea92 2e03541 bbcea92 ccad9ef 2e03541 a93c076 ccad9ef bbcea92 8b644df 2e03541 8b644df bbcea92 2e03541 bcc9c6b 2e03541 bbcea92 ccad9ef bbcea92 ccad9ef 112e6b8 bbcea92 ccad9ef 8b644df bcc9c6b 8b644df bbcea92 8b644df 112e6b8 ccad9ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import spaces
# Load the model and tokenizer
peft_model_id = "rootxhacker/CodeAstra-7B"
config = PeftConfig.from_pretrained(peft_model_id)
# Function to move tensors to CPU
def to_cpu(obj):
if isinstance(obj, torch.Tensor):
return obj.cpu()
elif isinstance(obj, list):
return [to_cpu(item) for item in obj]
elif isinstance(obj, tuple):
return tuple(to_cpu(item) for item in obj)
elif isinstance(obj, dict):
return {key: to_cpu(value) for key, value in obj.items()}
return obj
# Load the model
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
return_dict=True,
load_in_4bit=True,
device_map='auto'
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
@spaces.GPU()
def get_completion(query, model, tokenizer):
try:
# Move model to CUDA
model = model.cuda()
# Ensure input is on CUDA
inputs = tokenizer(query, return_tensors="pt").to('cuda')
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
# Move outputs to CPU before decoding
outputs = to_cpu(outputs)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
return f"An error occurred: {str(e)}"
finally:
# Move model back to CPU to free up GPU memory
model = model.cpu()
torch.cuda.empty_cache()
@spaces.GPU()
def code_review(code_to_analyze):
query = f"As a code review expert, examine the following code for potential security flaws and provide guidance on secure coding practices:\n{code_to_analyze}"
result = get_completion(query, model, tokenizer)
return result
# Create Gradio interface
iface = gr.Interface(
fn=code_review,
inputs=gr.Textbox(lines=10, label="Enter code to analyze"),
outputs=gr.Textbox(label="Code Review Result"),
title="Code Review Expert",
description="This tool analyzes code for potential security flaws and provides guidance on secure coding practices."
)
# Launch the Gradio app
iface.launch() |