File size: 2,394 Bytes
8b644df
 
 
d1bab71
18ef497
d1bab71
bbcea92
2e03541
 
bbcea92
ccad9ef
 
 
 
 
 
 
 
 
 
 
 
 
2e03541
a93c076
 
 
ccad9ef
bbcea92
8b644df
2e03541
8b644df
bbcea92
2e03541
 
bcc9c6b
2e03541
bbcea92
ccad9ef
 
 
 
 
 
bbcea92
 
ccad9ef
 
 
 
112e6b8
bbcea92
 
ccad9ef
 
 
 
8b644df
bcc9c6b
8b644df
bbcea92
8b644df
 
 
 
 
 
 
 
 
 
 
 
112e6b8
ccad9ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import spaces

# Load the model and tokenizer
peft_model_id = "rootxhacker/CodeAstra-7B"
config = PeftConfig.from_pretrained(peft_model_id)

# Function to move tensors to CPU
def to_cpu(obj):
    if isinstance(obj, torch.Tensor):
        return obj.cpu()
    elif isinstance(obj, list):
        return [to_cpu(item) for item in obj]
    elif isinstance(obj, tuple):
        return tuple(to_cpu(item) for item in obj)
    elif isinstance(obj, dict):
        return {key: to_cpu(value) for key, value in obj.items()}
    return obj

# Load the model
model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    return_dict=True,
    load_in_4bit=True,
    device_map='auto'
)

tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)

@spaces.GPU()
def get_completion(query, model, tokenizer):
    try:
        # Move model to CUDA
        model = model.cuda()
        
        # Ensure input is on CUDA
        inputs = tokenizer(query, return_tensors="pt").to('cuda')
        
        with torch.no_grad():
            outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
        
        # Move outputs to CPU before decoding
        outputs = to_cpu(outputs)
        
        return tokenizer.decode(outputs[0], skip_special_tokens=True)
    except Exception as e:
        return f"An error occurred: {str(e)}"
    finally:
        # Move model back to CPU to free up GPU memory
        model = model.cpu()
        torch.cuda.empty_cache()

@spaces.GPU()
def code_review(code_to_analyze):
    query = f"As a code review expert, examine the following code for potential security flaws and provide guidance on secure coding practices:\n{code_to_analyze}"
    result = get_completion(query, model, tokenizer)
    return result

# Create Gradio interface
iface = gr.Interface(
    fn=code_review,
    inputs=gr.Textbox(lines=10, label="Enter code to analyze"),
    outputs=gr.Textbox(label="Code Review Result"),
    title="Code Review Expert",
    description="This tool analyzes code for potential security flaws and provides guidance on secure coding practices."
)

# Launch the Gradio app
iface.launch()