Spaces:
Runtime error
Runtime error
File size: 5,448 Bytes
8b644df d1bab71 18ef497 d1bab71 bbcea92 2e03541 bbcea92 ccad9ef 2e03541 a93c076 ccad9ef bbcea92 2e03541 8b644df bbcea92 2e03541 bcc9c6b 2e03541 bbcea92 ccad9ef bbcea92 96e9aa5 ccad9ef 112e6b8 bbcea92 ccad9ef 8b644df bcc9c6b 8b644df 2cf6bfb 1b21c00 2cf6bfb 1b21c00 2cf6bfb 1b21c00 2cf6bfb 1b21c00 2cf6bfb 1b21c00 96e9aa5 655c6e2 96e9aa5 655c6e2 96e9aa5 655c6e2 96e9aa5 bbc12dc 2cf6bfb f722dc4 2cf6bfb bbc12dc 2cf6bfb 8b644df f722dc4 8b644df 96e9aa5 8b644df 112e6b8 ccad9ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import spaces
# Load the model and tokenizer
peft_model_id = "rootxhacker/CodeAstra-7B"
config = PeftConfig.from_pretrained(peft_model_id)
# Function to move tensors to CPU
def to_cpu(obj):
if isinstance(obj, torch.Tensor):
return obj.cpu()
elif isinstance(obj, list):
return [to_cpu(item) for item in obj]
elif isinstance(obj, tuple):
return tuple(to_cpu(item) for item in obj)
elif isinstance(obj, dict):
return {key: to_cpu(value) for key, value in obj.items()}
return obj
# Load the model
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
return_dict=True,
load_in_4bit=True,
device_map='auto'
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
@spaces.GPU()
def get_completion(query, model, tokenizer):
try:
# Move model to CUDA
model = model.cuda()
# Ensure input is on CUDA
inputs = tokenizer(query, return_tensors="pt").to('cuda')
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=1024, do_sample=True, temperature=0.7)
# Move outputs to CPU before decoding
outputs = to_cpu(outputs)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
return f"An error occurred: {str(e)}"
finally:
# Move model back to CPU to free up GPU memory
model = model.cpu()
torch.cuda.empty_cache()
@spaces.GPU()
def code_review(code_to_analyze):
few_shot_prompt = f"""Review the following code for security vulnerabilities, logic flaws, and potential improvements:
```php
function authenticateUser($username, $password) {{
$conn = new mysqli("localhost", "user", "password", "database");
$query = "SELECT * FROM users WHERE username = '$username' AND password = '$password'";
$result = $conn->query($query);
if ($result->num_rows > 0) {{
return true;
}}
return false;
}}
```
1. Understanding of the code:
- This function attempts to authenticate a user by checking their username and password against a database.
- It establishes a database connection, constructs a SQL query with the provided credentials, and executes it.
- If any matching rows are found, it returns true (authenticated); otherwise, it returns false.
2. Potential security issues:
- SQL Injection vulnerability: The username and password are directly inserted into the query without sanitization.
- Plaintext password storage: The code suggests that passwords are stored in plaintext in the database.
- Hardcoded database credentials: Connection details are hardcoded, which is a security risk.
3. Potential logic vulnerabilities:
- Multiple user authentication: The function returns true if more than one row is returned, which could lead to authentication issues if multiple users have the same credentials.
- No input validation: There's no checking for empty or null username/password inputs.
4. Suggestions for improvement:
- Use prepared statements to prevent SQL injection.
- Implement proper password hashing (e.g., using password_hash() and password_verify()).
- Store database credentials securely and separately from the code.
- Implement proper error handling and use constant-time comparison for passwords.
- Add input validation for username and password.
- Consider using a single-row fetch instead of num_rows to ensure single-user authentication.
Now, review the following code using the same approach:
{code_to_analyze}
Provide a detailed review including:
1. Understanding of the code
2. Potential security issues
3. Potential logic vulnerabilities
4. Suggestions for improvement
Start each section with its number and title."""
full_response = get_completion(few_shot_prompt, model, tokenizer)
# Find the start of the AI's response (after the input code)
response_start = full_response.find(code_to_analyze)
if response_start != -1:
response_start += len(code_to_analyze)
ai_response = full_response[response_start:].strip()
# Find the second occurrence of "1. Understanding of the code"
first_occurrence = ai_response.find("1. Understanding of the code")
if first_occurrence != -1:
second_occurrence = ai_response.find("1. Understanding of the code", first_occurrence + 1)
if second_occurrence != -1:
ai_response = ai_response[second_occurrence:]
else:
# If we can't find a second occurrence, start from the first one
ai_response = ai_response[first_occurrence:]
return ai_response
else:
return "Error: Unable to extract the AI's response. Here's the full output:\n\n" + full_response
# Create Gradio interface
iface = gr.Interface(
fn=code_review,
inputs=gr.Textbox(lines=10, label="Enter code to analyze"),
outputs=gr.Textbox(label="Code Review Result"),
title="Code Review Expert",
description="This tool analyzes code for potential security flaws, logic vulnerabilities, and provides guidance on secure coding practices."
)
# Launch the Gradio app
iface.launch() |