Spaces:
Sleeping
Sleeping
File size: 27,835 Bytes
b6d0292 33cd7e2 b6d0292 d301ee1 b6d0292 d301ee1 b6d0292 d301ee1 b6d0292 d301ee1 b6d0292 d301ee1 b6d0292 33cd7e2 b6d0292 33cd7e2 b6d0292 33cd7e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 |
#!/usr/bin/env python3
"""
AR-Diffusion Chat Interface for Hugging Face Spaces
Experimental model with Quality vs Speed modes
Optimized for Zero GPU deployment with @spaces.GPU
"""
import gradio as gr
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForCausalLM
import random
import numpy as np
import re
import time
from typing import List, Tuple, Generator
import os
import gc
import spaces
# Global model variables for memory efficiency
tokenizer = None
model = None
current_generator = None
device = None
def get_noising_schedule(i, max_it, sharpness=5.0):
"""Exponential noise schedule for denoising"""
x = i / max_it
return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness))
class ARDiffusionGenerator:
"""Base AR-Diffusion generator with shared functionality"""
def __init__(self, tokenizer, model, device):
self.tokenizer = tokenizer
self.model = model
self.device = device
self.mask_token_id = self._find_mask_token()
def _find_mask_token(self) -> int:
"""Find MASK token ID"""
for candidate in ['MASK', '<mask>', '[MASK]', '<|mask|>']:
try:
tokens = self.tokenizer.encode(candidate, add_special_tokens=False)
if len(tokens) == 1:
return tokens[0]
except:
continue
return getattr(self.tokenizer, 'unk_token_id', 50257) or 50257
def create_prompt(self, instruction: str) -> str:
"""Create Alpaca-style prompt"""
return f"""### Instruction:
{instruction}
### Response:
"""
class QualityGenerator(ARDiffusionGenerator):
"""Quality-focused AR-Diffusion generator (from first script)"""
def filter_logits(self, logits: torch.Tensor, top_k: int = 0, top_p: float = 1.0,
temperature: float = 1.0) -> torch.Tensor:
"""Research-grade filtering with proper order"""
original_shape = logits.shape
if logits.dim() == 3:
logits = logits.squeeze(0)
elif logits.dim() == 1:
logits = logits.unsqueeze(0)
logits = logits.clone()
# Temperature scaling first
if temperature != 1.0:
logits = logits / temperature
# Top-k filtering
if top_k > 0 and top_k < logits.size(-1):
topk_vals, _ = torch.topk(logits, top_k, dim=-1)
thresholds = topk_vals[:, -1].unsqueeze(-1)
logits = torch.where(logits < thresholds,
torch.full_like(logits, float("-inf")), logits)
# Top-p filtering
if top_p > 0.0 and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
probs = torch.softmax(sorted_logits, dim=-1)
cum_probs = probs.cumsum(dim=-1)
mask = cum_probs > top_p
mask[:, 0] = False
scatter_mask = torch.zeros_like(logits, dtype=torch.bool).scatter(
dim=-1, index=sorted_indices, src=mask)
logits = torch.where(scatter_mask,
torch.full_like(logits, float("-inf")), logits)
# Restore original shape
if len(original_shape) == 1:
logits = logits.squeeze(0)
elif original_shape[0] == 1 and logits.dim() == 2:
logits = logits.unsqueeze(0)
return logits
def generate_start(self, prompt: str, length: int = 8) -> List[int]:
"""Generate natural start"""
tokens = self.tokenizer(prompt, return_tensors="pt").to(self.device)
input_ids = tokens['input_ids'][0]
generated = []
current = input_ids.clone()
with torch.no_grad():
for _ in range(length):
outputs = self.model(input_ids=current.unsqueeze(0))
logits = outputs.logits[0, -1]
filtered_logits = self.filter_logits(
logits, top_k=50, top_p=0.9, temperature=0.8
)
probs = F.softmax(filtered_logits, dim=-1)
next_token = torch.multinomial(probs, 1).item()
if next_token in [self.tokenizer.eos_token_id, 128001, 13]:
break
generated.append(next_token)
current = torch.cat([current, torch.tensor([next_token], device=self.device)])
return generated
def create_sequence(self, prompt: str) -> Tuple[str, torch.Tensor]:
"""Create corrupted sequence for quality mode"""
prompt_tokens = self.tokenizer(prompt, return_tensors="pt")['input_ids'][0]
natural_start = self.generate_start(prompt, length=random.randint(8, 12))
# Longer sequences for better quality
prompt_length = len(prompt_tokens)
if prompt_length > 25:
num_masks = random.randint(35, 50)
elif prompt_length > 15:
num_masks = random.randint(25, 40)
else:
num_masks = random.randint(20, 35)
sequence = (
prompt_tokens.tolist() +
natural_start +
[self.mask_token_id] * num_masks +
[13]
)
tensor = torch.tensor(sequence)
text = self.tokenizer.decode(tensor, skip_special_tokens=False)
return text, tensor
def generate(self, prompt: str, progress_callback=None) -> Tuple[str, dict]:
"""Quality generation with progress updates and speed tracking"""
steps = 40
temperature = 0.7
start_time = time.time()
if progress_callback:
progress_callback(0.1, "Creating sequence...")
full_prompt = self.create_prompt(prompt)
corrupted_text, corrupted_ids = self.create_sequence(full_prompt)
if progress_callback:
progress_callback(0.2, "Starting quality denoising...")
result, stats = self._denoise_quality(corrupted_ids, steps, temperature, progress_callback)
# Calculate overall stats
total_time = time.time() - start_time
response = self._clean_response(result)
word_count = len(response.split())
stats.update({
'total_time': total_time,
'word_count': word_count,
'words_per_second': word_count / total_time if total_time > 0 else 0
})
return response, stats
def _denoise_quality(self, corrupted_ids: torch.Tensor, steps: int, temperature: float, progress_callback=None) -> Tuple[str, dict]:
"""Quality denoising with progress updates and speed tracking"""
current_ids = corrupted_ids.clone()
total_replacements = 0
start_time = time.time()
for step in range(steps):
step_start = time.time()
if progress_callback:
progress = 0.2 + (step / steps) * 0.7
elapsed = time.time() - start_time
tokens_per_sec = total_replacements / elapsed if elapsed > 0 else 0
progress_callback(progress, f"Quality step {step+1}/{steps} | {tokens_per_sec:.1f} tok/s")
mask_positions = (current_ids == self.mask_token_id).nonzero(as_tuple=True)[0]
if len(mask_positions) == 0:
break
with torch.no_grad():
outputs = self.model(input_ids=current_ids.unsqueeze(0).to(self.device))
logits = outputs.logits[0]
current_temp = max(0.4, temperature * (1 - step / steps))
# Conservative replacement for quality
if step < steps // 4:
max_replacements = min(1, len(mask_positions))
elif step < steps // 2:
max_replacements = min(2, len(mask_positions))
else:
max_replacements = min(3, len(mask_positions))
sorted_positions = sorted(mask_positions.tolist())
step_replacements = 0
for pos in sorted_positions[:max_replacements]:
if pos < len(logits):
token_logits = logits[pos].clone()
# Anti-repetition
context_start = max(0, pos - 5)
recent_tokens = set(current_ids[context_start:pos].tolist())
for recent_token in recent_tokens:
if recent_token < len(token_logits):
token_logits[recent_token] -= 8.0
# Quality filtering
filtered_logits = self.filter_logits(
token_logits,
top_k=30,
top_p=0.75,
temperature=current_temp
)
probs = F.softmax(filtered_logits, dim=-1)
probs = torch.clamp(probs, min=1e-8, max=1.0)
new_token = torch.multinomial(probs, 1).item()
# Filter unwanted tokens
unwanted = [self.mask_token_id, 128001, 128000]
if new_token in unwanted:
top_k_vals, top_k_indices = torch.topk(filtered_logits, 10)
for alternative in top_k_indices:
if alternative.item() not in unwanted:
new_token = alternative.item()
break
current_ids[pos] = new_token
step_replacements += 1
total_replacements += 1
if progress_callback:
elapsed = time.time() - start_time
final_speed = total_replacements / elapsed if elapsed > 0 else 0
progress_callback(0.95, f"Finalizing... | Final speed: {final_speed:.1f} tok/s")
# Calculate final statistics
total_time = time.time() - start_time
stats = {
'mode': 'Quality',
'steps': steps,
'tokens_replaced': total_replacements,
'generation_time': total_time,
'tokens_per_second': total_replacements / total_time if total_time > 0 else 0
}
result = self.tokenizer.decode(current_ids, skip_special_tokens=True)
return result, stats
def _clean_response(self, text: str) -> str:
"""Clean response for quality output"""
if "### Response:" in text:
response = text.split("### Response:")[-1].strip()
else:
response = text.strip()
if not response:
return text
# Quality cleaning
response = re.sub(r"'{2,}", "", response)
response = re.sub(r'"{2,}', "", response)
response = re.sub(r"\.{2,}", ".", response)
response = re.sub(r",{2,}", ",", response)
response = re.sub(r"\s+", " ", response)
# Remove artifacts
response = re.sub(r"\$+", "", response)
response = re.sub(r"#+", "", response)
response = re.sub(r"@+", "", response)
response = response.strip()
if response and not response.endswith(('.', '!', '?')):
response += "."
return response
class SpeedGenerator(ARDiffusionGenerator):
"""Speed-focused AR-Diffusion generator (from second script)"""
def filter_logits(self, logits: torch.Tensor, top_k: int = 15, top_p: float = 0.8,
temperature: float = 1.0) -> torch.Tensor:
"""Fast logits filtering"""
logits = logits.clone()
if temperature != 1.0:
logits = logits / temperature
# Top-k filtering
if top_k > 0 and top_k < logits.size(-1):
topk_vals, _ = torch.topk(logits, top_k, dim=-1)
threshold = topk_vals[-1]
logits = torch.where(logits < threshold, torch.full_like(logits, float("-inf")), logits)
# Top-p filtering
if top_p > 0.0 and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
probs = torch.softmax(sorted_logits, dim=-1)
cum_probs = probs.cumsum(dim=-1)
mask = cum_probs > top_p
mask[0] = False
scatter_mask = torch.zeros_like(logits, dtype=torch.bool)
scatter_mask.scatter_(0, sorted_indices, mask)
logits = torch.where(scatter_mask, torch.full_like(logits, float("-inf")), logits)
return logits
def generate_start(self, prompt: str, length: int = 6) -> List[int]:
"""Generate natural start for speed mode"""
tokens = self.tokenizer(prompt, return_tensors="pt").to(self.device)
input_ids = tokens['input_ids'][0]
generated = []
current = input_ids.clone()
with torch.no_grad():
for _ in range(length):
outputs = self.model(input_ids=current.unsqueeze(0))
logits = outputs.logits[0, -1]
filtered_logits = self.filter_logits(logits, top_k=20, top_p=0.9, temperature=0.8)
probs = F.softmax(filtered_logits, dim=-1)
next_token = torch.multinomial(probs, 1).item()
if next_token in [self.tokenizer.eos_token_id, 128001, 13]:
break
generated.append(next_token)
current = torch.cat([current, torch.tensor([next_token], device=self.device)])
return generated
def create_sequence(self, prompt: str) -> Tuple[str, torch.Tensor]:
"""Create sequence optimized for speed"""
prompt_tokens = self.tokenizer(prompt, return_tensors="pt")['input_ids'][0]
natural_start = self.generate_start(prompt, length=6)
# Shorter sequences for speed
prompt_words = len(prompt.split())
if prompt_words > 8:
num_masks = random.randint(15, 25)
else:
num_masks = random.randint(12, 20)
sequence = (
prompt_tokens.tolist() +
natural_start +
[self.mask_token_id] * num_masks +
[13]
)
tensor = torch.tensor(sequence)
text = self.tokenizer.decode(tensor, skip_special_tokens=False)
return text, tensor
def generate(self, prompt: str, progress_callback=None) -> Tuple[str, dict]:
"""Speed generation with progress updates and speed tracking"""
steps = 10
temperature = 0.8
start_time = time.time()
if progress_callback:
progress_callback(0.1, "Creating sequence...")
full_prompt = self.create_prompt(prompt)
corrupted_text, corrupted_ids = self.create_sequence(full_prompt)
if progress_callback:
progress_callback(0.2, "Starting speed denoising...")
result, stats = self._denoise_speed(corrupted_ids, steps, temperature, progress_callback)
# Calculate overall stats
total_time = time.time() - start_time
response = self._clean_response(result)
word_count = len(response.split())
stats.update({
'total_time': total_time,
'word_count': word_count,
'words_per_second': word_count / total_time if total_time > 0 else 0
})
return response, stats
def _denoise_speed(self, corrupted_ids: torch.Tensor, steps: int, temperature: float, progress_callback=None) -> Tuple[str, dict]:
"""Ultra-fast denoising with progress updates and speed tracking"""
current_ids = corrupted_ids.clone()
total_replacements = 0
start_time = time.time()
# Use mixed precision for speed on GPU
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=self.device.type == 'cuda'):
for step in range(steps):
step_start = time.time()
if progress_callback:
progress = 0.2 + (step / steps) * 0.7
elapsed = time.time() - start_time
tokens_per_sec = total_replacements / elapsed if elapsed > 0 else 0
progress_callback(progress, f"Speed step {step+1}/{steps} | {tokens_per_sec:.1f} tok/s")
mask_pos = (current_ids == self.mask_token_id).nonzero(as_tuple=True)[0]
if len(mask_pos) == 0:
break
with torch.no_grad():
outputs = self.model(input_ids=current_ids.unsqueeze(0).to(self.device))
logits = outputs.logits[0]
current_temp = temperature * (0.9 + 0.2 * (step / steps))
# Aggressive replacement for speed
max_replace = min(8, len(mask_pos))
positions = sorted(mask_pos.tolist())[:max_replace]
step_replacements = 0
for pos in positions:
if pos < len(logits):
token_logits = logits[pos].clone()
# Light anti-repetition
recent_start = max(0, pos - 3)
recent_tokens = set(current_ids[recent_start:pos].tolist())
for token in recent_tokens:
if token < len(token_logits):
token_logits[token] -= 3.0
# Fast filtering
filtered_logits = self.filter_logits(
token_logits, top_k=12, top_p=0.85, temperature=current_temp
)
probs = F.softmax(filtered_logits, dim=-1)
probs = torch.clamp(probs, min=1e-8, max=1.0)
new_token = torch.multinomial(probs, 1).item()
# Quick filtering
if new_token in [self.mask_token_id, 128001, 128000]:
top_vals, top_indices = torch.topk(filtered_logits, 3)
new_token = top_indices[1].item()
current_ids[pos] = new_token
step_replacements += 1
total_replacements += 1
if progress_callback:
elapsed = time.time() - start_time
final_speed = total_replacements / elapsed if elapsed > 0 else 0
progress_callback(0.95, f"Finalizing... | Final speed: {final_speed:.1f} tok/s")
# Calculate final statistics
total_time = time.time() - start_time
stats = {
'mode': 'Speed',
'steps': steps,
'tokens_replaced': total_replacements,
'generation_time': total_time,
'tokens_per_second': total_replacements / total_time if total_time > 0 else 0
}
result = self.tokenizer.decode(current_ids, skip_special_tokens=True)
return result, stats
def _clean_response(self, text: str) -> str:
"""Clean response for speed output"""
if "### Response:" in text:
response = text.split("### Response:")[-1].strip()
else:
response = text.strip()
if not response:
return text
# Minimal cleaning for speed
response = re.sub(r"'{3,}", "", response)
response = re.sub(r'"{3,}', "", response)
response = re.sub(r"\.{3,}", ".", response)
response = re.sub(r",{3,}", ",", response)
response = re.sub(r"\s+", " ", response)
response = response.strip()
if response and not response.endswith(('.', '!', '?')):
response += "."
return response
{device}...")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
device_map="auto" if device.type == "cuda" else None,
trust_remote_code=True,
low_cpu_mem_usage=True
)
return tokenizer, model, device
def cleanup_memory():
"""Clean up GPU memory"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
@spaces.GPU
def chat_function(message, history, mode, progress=gr.Progress()):
"""Main chat function with @spaces.GPU decorator, progress tracking, and speed display"""
if not message.strip():
return history, "", ""
try:
# Load model (this will run on GPU when GPU is allocated)
progress(0.05)
tok, mod, dev = load_model()
# Create appropriate generator
if mode == "Quality (Slower, Better)":
generator = QualityGenerator(tok, mod, dev)
progress(0.1)
else:
generator = SpeedGenerator(tok, mod, dev)
progress(0.1)
# Generate response with progress callback
def progress_callback(pct, status_msg):
progress(pct)
# We'll show status in the performance display instead
response, stats = generator.generate(message, progress_callback)
progress(1.0)
# Create performance info
perf_info = f"""**⚡ Performance Stats:**
- **Mode:** {stats['mode']}
- **Generation Time:** {stats['generation_time']:.2f}s
- **Tokens Replaced:** {stats['tokens_replaced']}
- **Speed:** {stats['tokens_per_second']:.1f} tokens/sec
- **Words Generated:** {stats['word_count']} words
- **Words/Second:** {stats['words_per_second']:.1f}
- **Steps:** {stats['steps']}"""
# Update history
history.append([message, response])
# Cleanup memory for Zero GPU efficiency
cleanup_memory()
return history, "", perf_info
except Exception as e:
error_msg = f"Error: {str(e)}"
history.append([message, error_msg])
cleanup_memory()
return history, "", f"**❌ Error occurred during generation**"
def clear_chat():
"""Clear chat history and cleanup memory"""
cleanup_memory()
return [], ""
# Create Gradio interface
def create_interface():
with gr.Blocks(
title="AR-Diffusion Chat - Experimental Model",
theme=gr.themes.Soft(),
css="""
.warning-box {
background-color: #fff3cd;
border: 1px solid #ffeaa7;
border-radius: 5px;
padding: 10px;
margin: 10px 0;
}
"""
) as interface:
gr.HTML("""
<div style="text-align: center; margin-bottom: 20px;">
<h1>🧪 AR-Diffusion Chat Interface</h1>
<p><strong>⚠️ EXPERIMENTAL MODEL ⚠️</strong></p>
<p>This is an experimental AR-Diffusion model. Results may vary and the model is still under development.</p>
<p><em>🔥 Powered by Zero GPU with @spaces.GPU</em></p>
<p><small>Model: rootxhacker/llama-3B-diffusion-exp-fixed (LoRA Adapter)</small></p>
</div>
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
height=500,
show_label=False
)
with gr.Row():
msg = gr.Textbox(
placeholder="Type your message here...",
show_label=False,
scale=9
)
send_btn = gr.Button("Send", scale=1, variant="primary")
with gr.Row():
clear_btn = gr.Button("Clear Chat", variant="secondary")
with gr.Column(scale=1):
gr.HTML("""
<div class="warning-box">
<h3>⚙️ Mode Selection</h3>
<p><strong>Quality Mode:</strong> Slower but more coherent responses (~40 steps)</p>
<p><strong>Speed Mode:</strong> Faster responses with decent quality (~10 steps)</p>
<p><em>🔥 GPU acceleration via @spaces.GPU</em></p>
</div>
""")
mode = gr.Radio(
choices=["Quality (Slower, Better)", "Speed (Faster)"],
value="Quality (Slower, Better)",
label="Generation Mode"
)
# Performance display
perf_display = gr.Markdown(
"**⚡ Performance Stats:** *Generate a message to see stats*",
elem_id="performance"
)
gr.HTML("""
<div class="warning-box">
<h3>ℹ️ About AR-Diffusion</h3>
<p>This experimental model uses autoregressive diffusion for text generation, creating responses by iteratively denoising masked tokens.</p>
<br>
<p><strong>Model:</strong> LoRA adapter trained for AR-Diffusion</p>
<p><strong>Note:</strong> This model is experimental and may produce unexpected results. If the specific model fails to load, a fallback model will be used for demonstration.</p>
</div>
""")
# Event handlers
def submit_message(message, history, mode):
return chat_function(message, history, mode)
send_btn.click(
submit_message,
inputs=[msg, chatbot, mode],
outputs=[chatbot, msg, perf_display]
)
msg.submit(
submit_message,
inputs=[msg, chatbot, mode],
outputs=[chatbot, msg, perf_display]
)
clear_btn.click(
clear_chat,
outputs=[chatbot, perf_display]
)
return interface
# Launch interface
if __name__ == "__main__":
demo = create_interface()
demo.queue(max_size=20) # Important for Zero GPU
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
# Updated requirements.txt should include:
# torch>=2.0.0
# transformers>=4.30.0
# gradio
# numpy
# accelerate
# spaces
# peft # For LoRA adapter support |