Babel / Optimus /code /scripts /scripts_local /eval_optimus_latent_space.sh
rynmurdock's picture
init
c5ca37a
export PYTHONPATH="${PYTHONPATH}:/workspace/code"
# export TRAIN_FILE=../data/datasets/penn/train.txt
# export TEST_FILE=../data/datasets/penn/test.txt
# export TRAIN_FILE=../data/datasets/wikitext-2/train.txt
# export TEST_FILE=../data/datasets/wikitext-2/valid.txt
# export GPU_ID=0,1
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_encoding_generation.py \
# --checkpoint_dir=../output/philly_clm_wiki2_0.0 \
# --output_dir=../output/philly_clm_wiki2_0.0 \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-uncased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --eval_data_file=$TEST_FILE \
# --per_gpu_eval_batch_size=1
# export TRAIN_FILE=../data/datasets/debug_data/train.txt
# export TEST_FILE=../data/datasets/debug_data/test.txt
# export GPU_ID=0,1
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_encoding_generation.py \
# --checkpoint_dir=../output/local_lm_vae_debug_bert_gpt \
# --output_dir=../output/local_lm_vae_debug_bert_gpt \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-uncased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --eval_data_file=$TEST_FILE \
# --per_gpu_eval_batch_size=1 \
# --gloabl_step_eval 400
export TRAIN_FILE=../data/datasets/debug_data/train.txt
export TEST_FILE=../data/datasets/debug_data/test.txt
export GPU_ID=1
# # interpolation from pre-trained model on wiki
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \
# --dataset Debug \
# --checkpoint_dir=../output/pretrain/philly_rr3_vc4_g8_base_vae_wikipedia_pretraining_beta_schedule_beta1.0_d1.0_ro0.5_ra0.25_768_v2 \
# --output_dir=../output/pretrain/philly_rr3_vc4_g8_base_vae_wikipedia_pretraining_beta_schedule_beta1.0_d1.0_ro0.5_ra0.25_768_v2 \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-cased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --per_gpu_eval_batch_size=1 \
# --gloabl_step_eval 508523 \
# --block_size 100 \
# --max_seq_length 100 \
# --latent_size 768 \
# --play_mode interpolation \
# --num_interpolation_steps 10
# # reconstruction from pre-trained model on wiki
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \
# --dataset Debug \
# --checkpoint_dir=../output/pretrain/philly_rr3_vc4_g8_base_vae_wikipedia_pretraining_beta_schedule_beta0.0_d1.0_ro0.5_ra0.25_32_v2 \
# --output_dir=../output/pretrain/philly_rr3_vc4_g8_base_vae_wikipedia_pretraining_beta_schedule_beta0.0_d1.0_ro0.5_ra0.25_32_v2 \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-cased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --per_gpu_eval_batch_size=1 \
# --gloabl_step_eval 400000 \
# --block_size 100 \
# --max_seq_length 100 \
# --latent_size 32 \
# --play_mode reconstrction
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \
# --dataset Debug \
# --checkpoint_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \
# --output_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-cased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --per_gpu_eval_batch_size=1 \
# --gloabl_step_eval 31250 \
# --block_size 100 \
# --max_seq_length 100 \
# --latent_size 768 \
# --play_mode interpolation \
# --num_interpolation_steps 10
# reconstrction
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \
# --dataset Debug \
# --checkpoint_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \
# --output_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-cased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --per_gpu_eval_batch_size=1 \
# --gloabl_step_eval 31250 \
# --block_size 100 \
# --max_seq_length 100 \
# --latent_size 768 \
# --play_mode reconstrction
# interact_with_user_input
CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \
--dataset Debug \
--checkpoint_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \
--output_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \
--encoder_model_type=bert \
--encoder_model_name_or_path=bert-base-cased \
--decoder_model_type=gpt2 \
--decoder_model_name_or_path=gpt2 \
--train_data_file=$TRAIN_FILE \
--eval_data_file=$TEST_FILE \
--per_gpu_eval_batch_size=1 \
--gloabl_step_eval 31250 \
--block_size 100 \
--max_seq_length 100 \
--latent_size 768 \
--interact_with_user_input \
--play_mode analogy \
--sent_source="a yellow cat likes to chase a long string ." \
--sent_target="a yellow cat likes to chase a short string ." \
--sent_input="a brown dog likes to eat long pasta ." \
--degree_to_target=1.0
# interact_with_user_input
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \
# --dataset Debug \
# --checkpoint_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \
# --output_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-cased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --per_gpu_eval_batch_size=1 \
# --gloabl_step_eval 31250 \
# --block_size 100 \
# --max_seq_length 100 \
# --latent_size 768 \
# --interact_with_user_input \
# --play_mode interpolation \
# --sent_source="a yellow cat likes to chase a short string ." \
# --sent_target="a brown dog likes to eat his food very slowly ." \
# --num_interpolation_steps=10
# export TRAIN_FILE=../data/datasets/debug_data/train.txt
# export TEST_FILE=../data/datasets/debug_data/test.txt
# export GPU_ID=1
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_encoding_generation.py \
# --dataset Debug \
# --checkpoint_dir=../output/local_lm_vae_debug_bert_gpt \
# --output_dir=../output/local_lm_vae_debug_bert_gpt \
# --encoder_model_type=bert \
# --encoder_model_name_or_path=bert-base-uncased \
# --decoder_model_type=gpt2 \
# --decoder_model_name_or_path=gpt2 \
# --train_data_file=$TRAIN_FILE \
# --eval_data_file=$TEST_FILE \
# --per_gpu_eval_batch_size=1 \
# --gloabl_step_eval 800 \
# --total_sents 10