Spaces:
Runtime error
Runtime error
export PYTHONPATH="${PYTHONPATH}:/workspace/code" | |
# export TRAIN_FILE=../data/datasets/penn/train.txt | |
# export TEST_FILE=../data/datasets/penn/test.txt | |
# export TRAIN_FILE=../data/datasets/wikitext-2/train.txt | |
# export TEST_FILE=../data/datasets/wikitext-2/valid.txt | |
# export GPU_ID=0,1 | |
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_encoding_generation.py \ | |
# --checkpoint_dir=../output/philly_clm_wiki2_0.0 \ | |
# --output_dir=../output/philly_clm_wiki2_0.0 \ | |
# --encoder_model_type=bert \ | |
# --encoder_model_name_or_path=bert-base-uncased \ | |
# --decoder_model_type=gpt2 \ | |
# --decoder_model_name_or_path=gpt2 \ | |
# --eval_data_file=$TEST_FILE \ | |
# --per_gpu_eval_batch_size=1 | |
# export TRAIN_FILE=../data/datasets/debug_data/train.txt | |
# export TEST_FILE=../data/datasets/debug_data/test.txt | |
# export GPU_ID=0,1 | |
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_encoding_generation.py \ | |
# --checkpoint_dir=../output/local_lm_vae_debug_bert_gpt \ | |
# --output_dir=../output/local_lm_vae_debug_bert_gpt \ | |
# --encoder_model_type=bert \ | |
# --encoder_model_name_or_path=bert-base-uncased \ | |
# --decoder_model_type=gpt2 \ | |
# --decoder_model_name_or_path=gpt2 \ | |
# --eval_data_file=$TEST_FILE \ | |
# --per_gpu_eval_batch_size=1 \ | |
# --gloabl_step_eval 400 | |
export TRAIN_FILE=../data/datasets/debug_data/train.txt | |
export TEST_FILE=../data/datasets/debug_data/test.txt | |
export GPU_ID=1 | |
# # interpolation from pre-trained model on wiki | |
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \ | |
# --dataset Debug \ | |
# --checkpoint_dir=../output/pretrain/philly_rr3_vc4_g8_base_vae_wikipedia_pretraining_beta_schedule_beta1.0_d1.0_ro0.5_ra0.25_768_v2 \ | |
# --output_dir=../output/pretrain/philly_rr3_vc4_g8_base_vae_wikipedia_pretraining_beta_schedule_beta1.0_d1.0_ro0.5_ra0.25_768_v2 \ | |
# --encoder_model_type=bert \ | |
# --encoder_model_name_or_path=bert-base-cased \ | |
# --decoder_model_type=gpt2 \ | |
# --decoder_model_name_or_path=gpt2 \ | |
# --train_data_file=$TRAIN_FILE \ | |
# --eval_data_file=$TEST_FILE \ | |
# --per_gpu_eval_batch_size=1 \ | |
# --gloabl_step_eval 508523 \ | |
# --block_size 100 \ | |
# --max_seq_length 100 \ | |
# --latent_size 768 \ | |
# --play_mode interpolation \ | |
# --num_interpolation_steps 10 | |
# # reconstruction from pre-trained model on wiki | |
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \ | |
# --dataset Debug \ | |
# --checkpoint_dir=../output/pretrain/philly_rr3_vc4_g8_base_vae_wikipedia_pretraining_beta_schedule_beta0.0_d1.0_ro0.5_ra0.25_32_v2 \ | |
# --output_dir=../output/pretrain/philly_rr3_vc4_g8_base_vae_wikipedia_pretraining_beta_schedule_beta0.0_d1.0_ro0.5_ra0.25_32_v2 \ | |
# --encoder_model_type=bert \ | |
# --encoder_model_name_or_path=bert-base-cased \ | |
# --decoder_model_type=gpt2 \ | |
# --decoder_model_name_or_path=gpt2 \ | |
# --train_data_file=$TRAIN_FILE \ | |
# --eval_data_file=$TEST_FILE \ | |
# --per_gpu_eval_batch_size=1 \ | |
# --gloabl_step_eval 400000 \ | |
# --block_size 100 \ | |
# --max_seq_length 100 \ | |
# --latent_size 32 \ | |
# --play_mode reconstrction | |
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \ | |
# --dataset Debug \ | |
# --checkpoint_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \ | |
# --output_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \ | |
# --encoder_model_type=bert \ | |
# --encoder_model_name_or_path=bert-base-cased \ | |
# --decoder_model_type=gpt2 \ | |
# --decoder_model_name_or_path=gpt2 \ | |
# --train_data_file=$TRAIN_FILE \ | |
# --eval_data_file=$TEST_FILE \ | |
# --per_gpu_eval_batch_size=1 \ | |
# --gloabl_step_eval 31250 \ | |
# --block_size 100 \ | |
# --max_seq_length 100 \ | |
# --latent_size 768 \ | |
# --play_mode interpolation \ | |
# --num_interpolation_steps 10 | |
# reconstrction | |
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \ | |
# --dataset Debug \ | |
# --checkpoint_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \ | |
# --output_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \ | |
# --encoder_model_type=bert \ | |
# --encoder_model_name_or_path=bert-base-cased \ | |
# --decoder_model_type=gpt2 \ | |
# --decoder_model_name_or_path=gpt2 \ | |
# --train_data_file=$TRAIN_FILE \ | |
# --eval_data_file=$TEST_FILE \ | |
# --per_gpu_eval_batch_size=1 \ | |
# --gloabl_step_eval 31250 \ | |
# --block_size 100 \ | |
# --max_seq_length 100 \ | |
# --latent_size 768 \ | |
# --play_mode reconstrction | |
# interact_with_user_input | |
CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \ | |
--dataset Debug \ | |
--checkpoint_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \ | |
--output_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \ | |
--encoder_model_type=bert \ | |
--encoder_model_name_or_path=bert-base-cased \ | |
--decoder_model_type=gpt2 \ | |
--decoder_model_name_or_path=gpt2 \ | |
--train_data_file=$TRAIN_FILE \ | |
--eval_data_file=$TEST_FILE \ | |
--per_gpu_eval_batch_size=1 \ | |
--gloabl_step_eval 31250 \ | |
--block_size 100 \ | |
--max_seq_length 100 \ | |
--latent_size 768 \ | |
--interact_with_user_input \ | |
--play_mode analogy \ | |
--sent_source="a yellow cat likes to chase a long string ." \ | |
--sent_target="a yellow cat likes to chase a short string ." \ | |
--sent_input="a brown dog likes to eat long pasta ." \ | |
--degree_to_target=1.0 | |
# interact_with_user_input | |
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_latent_generation.py \ | |
# --dataset Debug \ | |
# --checkpoint_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \ | |
# --output_dir=../output/LM/Snli/768/philly_vae_snli_b1.0_d5_r00.5_ra0.25_length_weighted/checkpoint-31250 \ | |
# --encoder_model_type=bert \ | |
# --encoder_model_name_or_path=bert-base-cased \ | |
# --decoder_model_type=gpt2 \ | |
# --decoder_model_name_or_path=gpt2 \ | |
# --train_data_file=$TRAIN_FILE \ | |
# --eval_data_file=$TEST_FILE \ | |
# --per_gpu_eval_batch_size=1 \ | |
# --gloabl_step_eval 31250 \ | |
# --block_size 100 \ | |
# --max_seq_length 100 \ | |
# --latent_size 768 \ | |
# --interact_with_user_input \ | |
# --play_mode interpolation \ | |
# --sent_source="a yellow cat likes to chase a short string ." \ | |
# --sent_target="a brown dog likes to eat his food very slowly ." \ | |
# --num_interpolation_steps=10 | |
# export TRAIN_FILE=../data/datasets/debug_data/train.txt | |
# export TEST_FILE=../data/datasets/debug_data/test.txt | |
# export GPU_ID=1 | |
# CUDA_VISIBLE_DEVICES=$GPU_ID python examples/big_ae/run_encoding_generation.py \ | |
# --dataset Debug \ | |
# --checkpoint_dir=../output/local_lm_vae_debug_bert_gpt \ | |
# --output_dir=../output/local_lm_vae_debug_bert_gpt \ | |
# --encoder_model_type=bert \ | |
# --encoder_model_name_or_path=bert-base-uncased \ | |
# --decoder_model_type=gpt2 \ | |
# --decoder_model_name_or_path=gpt2 \ | |
# --train_data_file=$TRAIN_FILE \ | |
# --eval_data_file=$TEST_FILE \ | |
# --per_gpu_eval_batch_size=1 \ | |
# --gloabl_step_eval 800 \ | |
# --total_sents 10 |