File size: 8,128 Bytes
fa78257
 
3dc3966
fa78257
75a3efc
8aba6d1
3dc3966
bb01eaa
3dc3966
 
defad66
fa78257
3dc5f5e
 
 
f3099db
3dc5f5e
 
 
fa78257
 
 
 
 
8aba6d1
 
7d0b69e
 
8aba6d1
 
 
 
 
f3099db
 
 
 
 
 
fa78257
 
8aba6d1
0120475
 
 
 
8aba6d1
 
fa78257
 
f89d8b2
fa78257
 
 
 
 
 
 
 
 
8aba6d1
 
fa78257
 
8aba6d1
 
 
fa78257
 
 
 
 
 
 
 
 
3dc5f5e
fa78257
 
 
 
 
 
 
 
 
 
 
16c3a1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180088d
8aba6d1
 
16c3a1a
f3099db
16c3a1a
180088d
8aba6d1
16c3a1a
8aba6d1
 
 
 
 
6ede1b7
8aba6d1
16c3a1a
 
 
8aba6d1
16c3a1a
 
8aba6d1
 
 
16c3a1a
b501b77
8aba6d1
fa78257
 
 
3dc3966
 
fa78257
 
3dc3966
 
 
fa78257
3dc3966
fa78257
3dc3966
 
fa78257
72953cd
3067e7b
8aba6d1
 
 
 
 
 
 
 
 
 
0120475
8aba6d1
 
 
 
 
 
b501b77
 
 
8aba6d1
 
b501b77
8aba6d1
 
b501b77
 
 
 
8aba6d1
 
 
 
ffed90e
 
b501b77
ffed90e
 
 
8aba6d1
 
 
b501b77
8aba6d1
 
 
3dc3966
fa78257
f838d5b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import pickle as pkl
from pathlib import Path
from threading import Thread
from typing import List, Tuple, Iterator, Optional
from queue import Queue

import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# TODO Sentence level highlighting instead (prediction after every word is not what it was trained on). Also solves token-level highlighting issues.
# TODO log prob output scaling highlighting instead?
# TODO make it look nicer
# TODO better examples. 
# TODO streaming output (need custom generation function because of probes)
# TODO add options to switch between models, SLT/TBG, layers?
# TODO full semantic entropy calculation

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """
<h1>Llama-2 7B Chat with Uncertainty Probes</h1>
<p>This Space demonstrates the Llama-2-7b-chat model with a semantic uncertainty probe.</p>
<p>This demo is based on our paper: <a href="https://arxiv.org/abs/2406.15927" target="_blank">"Semantic Entropy Probes: Robust and Cheap Hallucination Detection in LLMs"</a> by Jannik Kossen*, Jiatong Han*, Muhammed Razzak*, Lisa Schut, Shreshth Malik and Yarin Gal.</p>
<p>The highlighted text shows the model's uncertainty in real-time:</p>
<ul>
    <li><span style="background-color: #00FF00; color: black">Green</span> indicates more certain generations</li>
    <li><span style="background-color: #FF0000; color: black">Red</span> indicates more uncertain generations</li>
</ul>
<p>The demo compares the model's uncertainty with two different probes:</p>
<ul>
    <li><b>Semantic Uncertainty Probe:</b> Predicts the semantic uncertainty of the model's generations.</li>
    <li><b>Accuracy Probe:</b> Predicts the accuracy of the model's generations.</li>
</ul>
<p>Please see our paper for more details.</p>
"""

EXAMPLES = [
    ["What is the capital of France?", ""],
    ["Who landed on the moon?", ""],
    ["Who is Yarin Gal?", ""],
    ["Explain the theory of relativity in simple terms.", ""],
]

if torch.cuda.is_available():
    model_id = "meta-llama/Llama-2-7b-chat-hf"
    # TODO load the full model not the 8bit one?
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_8bit=True)
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.use_default_system_prompt = False

    # load the probe data
    with open("./model/20240625-131035_demo.pkl", "rb") as f:
        probe_data = pkl.load(f)
    # take the NQ open one
    probe_data = probe_data[-2]
    se_probe = probe_data['t_bmodel']
    se_layer_range = probe_data['sep_layer_range']
    acc_probe = probe_data['t_amodel']
    acc_layer_range = probe_data['ap_layer_range']
else:
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

@spaces.GPU
def generate(
    message: str,
    system_prompt: str,
    max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Tuple[str, str]:
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    #### Generate without threading
    generation_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        repetition_penalty=repetition_penalty,
        output_hidden_states=True,
        return_dict_in_generate=True,
    )
    with torch.no_grad():
        outputs = model.generate(**generation_kwargs)
    generated_tokens = outputs.sequences[0, input_ids.shape[1]:]
    generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
    print(generated_text)
    # hidden states
    hidden = outputs.hidden_states  # list of tensors, one for each token, then (batch size, sequence length, hidden size)

    se_highlighted_text = ""
    acc_highlighted_text = ""

    # skip the first hidden state as it is the prompt
    for i in range(1, len(hidden)):

        # Semantic Uncertainty Probe
        token_embeddings = torch.stack([generated_token[0, 0, :].cpu() for generated_token in hidden[i]]).numpy()   # (num_layers, hidden_size)
        se_concat_layers = token_embeddings[se_layer_range[0]:se_layer_range[1]].reshape(-1)
        se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1
        
        # Accuracy Probe
        acc_concat_layers = token_embeddings[acc_layer_range[0]:acc_layer_range[1]].reshape(-1)
        acc_probe_pred = (1 - acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][1]) * 2 - 1
        
        output_id = outputs.sequences[0, input_ids.shape[1]+i]
        output_word = tokenizer.decode(output_id)
        print(output_id, output_word, se_probe_pred, acc_probe_pred)  

        se_new_highlighted_text = highlight_text(output_word, se_probe_pred)
        acc_new_highlighted_text = highlight_text(output_word, acc_probe_pred)
        se_highlighted_text += f" {se_new_highlighted_text}"
        acc_highlighted_text += f" {acc_new_highlighted_text}"
        
    return se_highlighted_text, acc_highlighted_text
    


def highlight_text(text: str, uncertainty_score: float) -> str:
    if uncertainty_score > 0:
        html_color = "#%02X%02X%02X" % (
            255,
            int(255 * (1 - uncertainty_score)),
            int(255 * (1 - uncertainty_score)),
        )
    else:
        html_color = "#%02X%02X%02X" % (
            int(255 * (1 + uncertainty_score)),
            255,
            int(255 * (1 + uncertainty_score)),
        )
    return '<span style="background-color: {}; color: black">{}</span>'.format(
        html_color, text
    )

with gr.Blocks(title="Llama-2 7B Chat with Dual Probes", css="footer {visibility: hidden}") as demo:
    gr.HTML(DESCRIPTION)
    
    with gr.Row():
        with gr.Column():
            message = gr.Textbox(label="Message")
            system_prompt = gr.Textbox(label="System prompt", lines=2)
        
        with gr.Column():
            max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
            temperature = gr.Slider(label="Temperature", minimum=0.01, maximum=2.0, step=0.1, value=0.01)
            top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
            top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
            repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
    
    with gr.Row():
        generate_btn = gr.Button("Generate")
    # Add spacing between probes
    gr.HTML("<br><br>")

    with gr.Row():
        with gr.Column():
            # make a box
            title = gr.HTML("<h2>Semantic Uncertainty Probe</h2>")
            se_output = gr.HTML(label="Semantic Uncertainty Probe")
        
        # Add spacing between columns
        gr.HTML("<div style='width: 20px;'></div>")

        with gr.Column():
            title = gr.HTML("<h2>Accuracy Probe</h2>")
            acc_output = gr.HTML(label="Accuracy Probe")
    
    gr.Examples(
        examples=EXAMPLES,
        inputs=[message, system_prompt],
        outputs=[se_output, acc_output],
        fn=generate,
    )
    
    generate_btn.click(
        generate,
        inputs=[message, system_prompt, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[se_output, acc_output]
    )


if __name__ == "__main__":
    demo.launch()