Spaces:
Sleeping
Sleeping
File size: 12,142 Bytes
fa78257 3dc3966 fa78257 bc61ed1 8aba6d1 3dc3966 bb01eaa 3dc3966 defad66 fa78257 bc61ed1 3dc5f5e f3099db 3dc5f5e fa78257 bc61ed1 fa78257 8aba6d1 7d0b69e 8aba6d1 bf84689 fa78257 8aba6d1 0120475 8aba6d1 fa78257 f89d8b2 bc61ed1 fa78257 8aba6d1 fa78257 bc61ed1 8aba6d1 fa78257 bc61ed1 fa78257 16c3a1a bc61ed1 16c3a1a 180088d bc61ed1 8aba6d1 bc61ed1 8aba6d1 fa78257 3dc3966 fa78257 3dc3966 fa78257 3dc3966 fa78257 3dc3966 fa78257 72953cd 3067e7b bc61ed1 8aba6d1 0120475 8aba6d1 bc61ed1 b501b77 bc61ed1 b501b77 bc61ed1 b501b77 bc61ed1 b501b77 bc61ed1 8aba6d1 ffed90e b501b77 bc61ed1 ffed90e 8aba6d1 bc61ed1 8aba6d1 b501b77 bc61ed1 8aba6d1 bc61ed1 8aba6d1 3dc3966 fa78257 f838d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import os
import pickle as pkl
from pathlib import Path
from threading import Thread
from typing import List, Tuple, Iterator, Optional, Generator
from queue import Queue
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# TODO this is not as fast as it could be using generate function with 1 token at a time
# TODO log prob output scaling highlighting instead?
# TODO make it look nicer
# TODO better examples.
# TODO streaming output (need custom generation function because of probes)
# TODO add options to switch between models, SLT/TBG, layers?
# TODO full semantic entropy calculation
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 100
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """
<h1>Llama-2 7B Chat with Uncertainty Probes</h1>
<p>This Space demonstrates the Llama-2-7b-chat model with a semantic uncertainty probe.</p>
<p>This demo is based on our paper: <a href="https://arxiv.org/abs/2406.15927" target="_blank">"Semantic Entropy Probes: Robust and Cheap Hallucination Detection in LLMs"</a> by Jannik Kossen*, Jiatong Han*, Muhammed Razzak*, Lisa Schut, Shreshth Malik and Yarin Gal.</p>
<p>The highlighted text shows the model's uncertainty in real-time:</p>
<ul>
<li><span style="background-color: #00FF00; color: black">Green</span> indicates more certain generations</li>
<li><span style="background-color: #FF0000; color: black">Red</span> indicates more uncertain generations</li>
</ul>
<p>Please see our paper for more details. NOTE: This demo is a work in progress.</p>
"""
EXAMPLES = [
["What is the capital of France?", ""],
["Who landed on the moon?", ""],
["Who is Yarin Gal?", ""],
["Explain the theory of relativity in simple terms.", ""],
]
if torch.cuda.is_available():
model_id = "meta-llama/Llama-2-7b-chat-hf"
# TODO load the full model not the 8bit one?
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
# load the probe data
with open("./model/20240625-131035_demo.pkl", "rb") as f:
probe_data = pkl.load(f)
# take the NQ open one
probe_data = probe_data[-2]
se_probe = probe_data['t_bmodel']
se_layer_range = probe_data['sep_layer_range']
acc_probe = probe_data['t_amodel']
acc_layer_range = probe_data['ap_layer_range']
print(f"Loaded probes with layer ranges: {se_layer_range}, {acc_layer_range}")
else:
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
@spaces.GPU
def generate(
message: str,
system_prompt: str,
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Generator[Tuple[str, str], None, None]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
generation_kwargs = dict(
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
output_hidden_states=True,
return_dict_in_generate=True,
)
sentence_start_idx = input_ids.shape[1]
sentence_token_count = 0
finished = False
with torch.no_grad():
# highlight and return the prompt
outputs = model.generate(**generation_kwargs, input_ids=input_ids, max_new_tokens=1)
prompt_tokens = outputs.sequences[0, :input_ids.shape[1]]
prompt_text = tokenizer.decode(prompt_tokens, skip_special_tokens=True)
print(prompt_tokens, prompt_text)
# hidden states
hidden = outputs.hidden_states
# last token embeddings (note this is the same as the token before generation given this is the prompt)
token_embeddings = torch.stack([generated_token[0, -1, :].cpu() for generated_token in hidden[0]]).numpy()
se_concat_layers = token_embeddings[se_layer_range[0]:se_layer_range[1]].reshape(-1)
se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1
acc_concat_layers = token_embeddings[acc_layer_range[0]:acc_layer_range[1]].reshape(-1)
acc_probe_pred = acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][0] * 2 - 1 # accuracy probe is inverted wrt uncertainty
se_new_highlighted_text = highlight_text(prompt_text, se_probe_pred)
acc_new_highlighted_text = highlight_text(prompt_text, acc_probe_pred)
se_highlighted_text = f"{se_new_highlighted_text}<br>"
acc_highlighted_text = f"{acc_new_highlighted_text}<br>"
while not finished:
outputs = model.generate(**generation_kwargs, input_ids=input_ids, max_new_tokens=1)
# this should only be the one extra token (equivalent to -1)
generated_tokens = outputs.sequences[0, input_ids.shape[1]:]
print(f"generated_tokens {generated_tokens}" )
# add to the conversation
input_ids = torch.cat([input_ids, generated_tokens.unsqueeze(0)], dim=-1)
# stop at the end of a sequence
if generated_tokens[-1] == tokenizer.eos_token_id or input_ids.shape[1] > max_new_tokens:
print("Finished")
finished = True
if generated_text != "":
# do final prediction on the last generated text (one before the eos token)
print("Predicting probes")
hidden = outputs.hidden_states # hidden states = (num generated tokens, num layers, batch size, num tokens, hidden size)
# last token embeddings
token_embeddings = torch.stack([generated_token[0, -2, :].cpu() for generated_token in hidden[-1]]).numpy()
se_concat_layers = token_embeddings[se_layer_range[0]:se_layer_range[1]].reshape(-1)
se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1
acc_concat_layers = token_embeddings[acc_layer_range[0]:acc_layer_range[1]].reshape(-1)
acc_probe_pred = acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][0] * 2 - 1
print(f"se_probe_pred {se_probe_pred}, acc_probe_pred {acc_probe_pred}")
se_new_highlighted_text = highlight_text(generated_text, se_probe_pred)
acc_new_highlighted_text = highlight_text(generated_text, acc_probe_pred)
se_highlighted_text += f" {se_new_highlighted_text}"
acc_highlighted_text += f" {acc_new_highlighted_text}"
sentence_start_idx += sentence_token_count
sentence_token_count = 0
# decode the full generated text
generated_text = tokenizer.decode(outputs.sequences[0, sentence_start_idx:], skip_special_tokens=True)
print(f"generated_text: {generated_text}")
sentence_token_count += 1
# TODO this should be when a factoid is detected rather than just punctuation. Is the SLT token always basically a period for the probes?
if generated_text.endswith(('.', '!', '?', ';', '."', '!"', '?"')):
print("Predicting probes")
hidden = outputs.hidden_states # hidden states = (num generated tokens, num layers, batch size, num tokens, hidden size)
# last token embeddings
token_embeddings = torch.stack([generated_token[0, -1, :].cpu() for generated_token in hidden[-1]]).numpy()
se_concat_layers = token_embeddings[se_layer_range[0]:se_layer_range[1]].reshape(-1)
se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1
acc_concat_layers = token_embeddings[acc_layer_range[0]:acc_layer_range[1]].reshape(-1)
acc_probe_pred = acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][0] * 2 - 1
print(f"se_probe_pred {se_probe_pred}, acc_probe_pred {acc_probe_pred}")
se_new_highlighted_text = highlight_text(generated_text, se_probe_pred)
acc_new_highlighted_text = highlight_text(generated_text, acc_probe_pred)
se_highlighted_text += f" {se_new_highlighted_text}"
acc_highlighted_text += f" {acc_new_highlighted_text}"
sentence_start_idx += sentence_token_count
sentence_token_count = 0
generated_text = ""
# yield se_highlighted_text + generated_text, acc_highlighted_text + generated_text
yield se_highlighted_text + generated_text #, acc_highlighted_text + generated_text
def highlight_text(text: str, uncertainty_score: float) -> str:
if uncertainty_score > 0:
html_color = "#%02X%02X%02X" % (
255,
int(255 * (1 - uncertainty_score)),
int(255 * (1 - uncertainty_score)),
)
else:
html_color = "#%02X%02X%02X" % (
int(255 * (1 + uncertainty_score)),
255,
int(255 * (1 + uncertainty_score)),
)
return '<span style="background-color: {}; color: black">{}</span>'.format(
html_color, text
)
with gr.Blocks(title="Llama-2 7B Chat with Semantic Uncertainty Probes", css="footer {visibility: hidden}") as demo:
gr.HTML(DESCRIPTION)
with gr.Row():
with gr.Column():
message = gr.Textbox(label="Message")
system_prompt = gr.Textbox(label="System prompt", lines=2)
with gr.Column():
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.01, maximum=2.0, step=0.1, value=0.01)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Row():
generate_btn = gr.Button("Generate")
stop_btn = gr.Button("Stop")
# Add spacing between probes
gr.HTML("<br><br>")
# with gr.Row():
with gr.Column():
title = gr.HTML("<h2>Semantic Uncertainty Probe</h2>")
se_output = gr.HTML(label="Semantic Uncertainty Probe")
# with gr.Column():
# make a box
# title = gr.HTML("<h2>Semantic Uncertainty Probe</h2>")
# se_output = gr.HTML(label="Semantic Uncertainty Probe")
# Add spacing between columns
# gr.HTML("<div style='width: 20px;'></div>")
# with gr.Column():
# title = gr.HTML("<h2>Accuracy Probe</h2>")
# acc_output = gr.HTML(label="Accuracy Probe")
gr.Examples(
examples=EXAMPLES,
inputs=[message, system_prompt],
# outputs=[se_output, acc_output],
outputs=[se_output],
fn=generate,
)
generate_event = generate_btn.click(
generate,
inputs=[message, system_prompt, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
# outputs=[se_output, acc_output]
outputs=[se_output]
)
stop_btn.click(fn=None, inputs=None, outputs=None, cancels=[generate_event])
if __name__ == "__main__":
demo.launch()
|