s-a-malik
fix title
7d0b69e
raw
history blame
8.13 kB
import os
import pickle as pkl
from pathlib import Path
from threading import Thread
from typing import List, Tuple, Iterator, Optional
from queue import Queue
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# TODO Sentence level highlighting instead (prediction after every word is not what it was trained on). Also solves token-level highlighting issues.
# TODO log prob output scaling highlighting instead?
# TODO make it look nicer
# TODO better examples.
# TODO streaming output (need custom generation function because of probes)
# TODO add options to switch between models, SLT/TBG, layers?
# TODO full semantic entropy calculation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """
<h1>Llama-2 7B Chat with Uncertainty Probes</h1>
<p>This Space demonstrates the Llama-2-7b-chat model with a semantic uncertainty probe.</p>
<p>This demo is based on our paper: <a href="https://arxiv.org/abs/2406.15927" target="_blank">"Semantic Entropy Probes: Robust and Cheap Hallucination Detection in LLMs"</a> by Jannik Kossen*, Jiatong Han*, Muhammed Razzak*, Lisa Schut, Shreshth Malik and Yarin Gal.</p>
<p>The highlighted text shows the model's uncertainty in real-time:</p>
<ul>
<li><span style="background-color: #00FF00; color: black">Green</span> indicates more certain generations</li>
<li><span style="background-color: #FF0000; color: black">Red</span> indicates more uncertain generations</li>
</ul>
<p>The demo compares the model's uncertainty with two different probes:</p>
<ul>
<li><b>Semantic Uncertainty Probe:</b> Predicts the semantic uncertainty of the model's generations.</li>
<li><b>Accuracy Probe:</b> Predicts the accuracy of the model's generations.</li>
</ul>
<p>Please see our paper for more details.</p>
"""
EXAMPLES = [
["What is the capital of France?", ""],
["Who landed on the moon?", ""],
["Who is Yarin Gal?", ""],
["Explain the theory of relativity in simple terms.", ""],
]
if torch.cuda.is_available():
model_id = "meta-llama/Llama-2-7b-chat-hf"
# TODO load the full model not the 8bit one?
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
# load the probe data
with open("./model/20240625-131035_demo.pkl", "rb") as f:
probe_data = pkl.load(f)
# take the NQ open one
probe_data = probe_data[-2]
se_probe = probe_data['t_bmodel']
se_layer_range = probe_data['sep_layer_range']
acc_probe = probe_data['t_amodel']
acc_layer_range = probe_data['ap_layer_range']
else:
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
@spaces.GPU
def generate(
message: str,
system_prompt: str,
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Tuple[str, str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
#### Generate without threading
generation_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
output_hidden_states=True,
return_dict_in_generate=True,
)
with torch.no_grad():
outputs = model.generate(**generation_kwargs)
generated_tokens = outputs.sequences[0, input_ids.shape[1]:]
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
print(generated_text)
# hidden states
hidden = outputs.hidden_states # list of tensors, one for each token, then (batch size, sequence length, hidden size)
se_highlighted_text = ""
acc_highlighted_text = ""
# skip the first hidden state as it is the prompt
for i in range(1, len(hidden)):
# Semantic Uncertainty Probe
token_embeddings = torch.stack([generated_token[0, 0, :].cpu() for generated_token in hidden[i]]).numpy() # (num_layers, hidden_size)
se_concat_layers = token_embeddings[se_layer_range[0]:se_layer_range[1]].reshape(-1)
se_probe_pred = se_probe.predict_proba(se_concat_layers.reshape(1, -1))[0][1] * 2 - 1
# Accuracy Probe
acc_concat_layers = token_embeddings[acc_layer_range[0]:acc_layer_range[1]].reshape(-1)
acc_probe_pred = (1 - acc_probe.predict_proba(acc_concat_layers.reshape(1, -1))[0][1]) * 2 - 1
output_id = outputs.sequences[0, input_ids.shape[1]+i]
output_word = tokenizer.decode(output_id)
print(output_id, output_word, se_probe_pred, acc_probe_pred)
se_new_highlighted_text = highlight_text(output_word, se_probe_pred)
acc_new_highlighted_text = highlight_text(output_word, acc_probe_pred)
se_highlighted_text += f" {se_new_highlighted_text}"
acc_highlighted_text += f" {acc_new_highlighted_text}"
return se_highlighted_text, acc_highlighted_text
def highlight_text(text: str, uncertainty_score: float) -> str:
if uncertainty_score > 0:
html_color = "#%02X%02X%02X" % (
255,
int(255 * (1 - uncertainty_score)),
int(255 * (1 - uncertainty_score)),
)
else:
html_color = "#%02X%02X%02X" % (
int(255 * (1 + uncertainty_score)),
255,
int(255 * (1 + uncertainty_score)),
)
return '<span style="background-color: {}; color: black">{}</span>'.format(
html_color, text
)
with gr.Blocks(title="Llama-2 7B Chat with Dual Probes", css="footer {visibility: hidden}") as demo:
gr.HTML(DESCRIPTION)
with gr.Row():
with gr.Column():
message = gr.Textbox(label="Message")
system_prompt = gr.Textbox(label="System prompt", lines=2)
with gr.Column():
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.01, maximum=2.0, step=0.1, value=0.01)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Row():
generate_btn = gr.Button("Generate")
# Add spacing between probes
gr.HTML("<br><br>")
with gr.Row():
with gr.Column():
# make a box
title = gr.HTML("<h2>Semantic Uncertainty Probe</h2>")
se_output = gr.HTML(label="Semantic Uncertainty Probe")
# Add spacing between columns
gr.HTML("<div style='width: 20px;'></div>")
with gr.Column():
title = gr.HTML("<h2>Accuracy Probe</h2>")
acc_output = gr.HTML(label="Accuracy Probe")
gr.Examples(
examples=EXAMPLES,
inputs=[message, system_prompt],
outputs=[se_output, acc_output],
fn=generate,
)
generate_btn.click(
generate,
inputs=[message, system_prompt, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[se_output, acc_output]
)
if __name__ == "__main__":
demo.launch()