File size: 8,292 Bytes
0f965de
62a592a
a5e055b
62a592a
0f965de
a5e055b
 
ee1adb0
 
 
 
 
a5e055b
62a592a
 
 
0f965de
62a592a
a5e055b
0f965de
 
 
 
62a592a
0f965de
 
 
 
d45486e
0f965de
 
 
 
 
62a592a
0f965de
 
 
 
 
 
a5e055b
0f965de
 
62a592a
 
 
 
 
a5e055b
 
62a592a
 
a5e055b
62a592a
 
a5e055b
 
 
 
62a592a
a5e055b
11cd804
62a592a
a5e055b
62a592a
 
 
f073c65
 
 
 
a5e055b
 
11cd804
62a592a
 
a5e055b
 
 
 
 
 
 
 
f073c65
a5e055b
 
 
 
 
 
 
 
 
62a592a
 
 
 
a5e055b
62a592a
a5e055b
 
 
4c05f69
62a592a
a5e055b
 
 
62a592a
f073c65
a5e055b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f073c65
a5e055b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f073c65
 
a5e055b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c05f69
a5e055b
 
 
 
 
 
 
 
 
 
 
 
 
 
f073c65
a5e055b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import spaces
import gradio as gr
import torch
import os
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, AutoModelForCausalLM, AutoProcessor
from gtts import gTTS
from langdetect import detect
import subprocess
from io import BytesIO

# Install flash-attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Disable CUDA initialization at import
os.environ['CUDA_VISIBLE_DEVICES'] = ''
torch.set_grad_enabled(False)

print("CUDA initialization disabled at import")

@spaces.GPU
def load_whisper():
    try:
        processor = WhisperProcessor.from_pretrained("openai/whisper-small")
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
        return processor, model
    except Exception as e:
        print(f"Error loading Whisper model: {e}")
        return None, None

@spaces.GPU
def load_vision_model():
    try:
        model_id = "microsoft/Phi-3.5-vision-instruct"
        model = AutoModelForCausalLM.from_pretrained(
            model_id, trust_remote_code=True, torch_dtype=torch.float16
        )
        processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
        return model, processor
    except Exception as e:
        print(f"Error loading vision model: {e}")
        return None, None

@spaces.GPU
def load_sarvam():
    try:
        return pipeline('sarvamai/sarvam-2b-v0.5')
    except Exception as e:
        print(f"Error loading Sarvam model: {e}")
        return None

@spaces.GPU
def process_audio(audio_path, whisper_processor, whisper_model):
    import librosa
    try:
        audio, sr = librosa.load(audio_path, sr=16000)
        input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features
        predicted_ids = whisper_model.generate(input_features)
        transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
        return transcription
    except Exception as e:
        return f"Error processing audio: {str(e)}"

@spaces.GPU
def process_image(image, text_prompt, vision_model, vision_processor):
    try:
        messages = [{"role": "user", "content": f"{text_prompt}\n<|image_1|>"}]
        prompt = vision_processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = vision_processor(prompt, image, return_tensors="pt")
        generate_ids = vision_model.generate(**inputs, max_new_tokens=1000, temperature=0.2, do_sample=True)
        generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
        response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        return response
    except Exception as e:
        return f"Error processing image: {str(e)}"

@spaces.GPU
def generate_response(transcription, sarvam_pipe):
    try:
        response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text']
        return response
    except Exception as e:
        return f"Error generating response: {str(e)}"

def text_to_speech(text, lang='hi'):
    try:
        tts = gTTS(text=text, lang=lang, tld='co.in')
        tts.save("response.mp3")
        return "response.mp3"
    except Exception as e:
        print(f"Error in text-to-speech: {str(e)}")
        return None

@spaces.GPU
def indic_vision_assistant(input_type, audio_input, text_input, image_input):
    try:
        whisper_processor, whisper_model = load_whisper()
        vision_model, vision_processor = load_vision_model()
        sarvam_pipe = load_sarvam()

        if input_type == "audio" and audio_input is not None:
            transcription = process_audio(audio_input, whisper_processor, whisper_model)
        elif input_type == "text" and text_input:
            transcription = text_input
        elif input_type == "image" and image_input is not None:
            text_prompt = text_input if text_input else "Describe this image in detail."
            transcription = process_image(image_input, text_prompt, vision_model, vision_processor)
        else:
            return "Please provide either audio, text, or image input.", "No input provided.", None

        response = generate_response(transcription, sarvam_pipe)
        lang = detect(response)
        audio_response = text_to_speech(response, lang)
        
        return transcription, response, audio_response
    except Exception as e:
        error_message = f"An error occurred: {str(e)}"
        return error_message, error_message, None

# Custom CSS
custom_css = """
body {
    background-color: #0b0f19;
    color: #e2e8f0;
    font-family: 'Arial', sans-serif;
}
#custom-header {
    text-align: center;
    padding: 20px 0;
    background-color: #1a202c;
    margin-bottom: 20px;
    border-radius: 10px;
}
#custom-header h1 {
    font-size: 2.5rem;
    margin-bottom: 0.5rem;
}
#custom-header h1 .blue {
    color: #60a5fa;
}
#custom-header h1 .pink {
    color: #f472b6;
}
#custom-header h2 {
    font-size: 1.5rem;
    color: #94a3b8;
}
.suggestions {
    display: flex;
    justify-content: center;
    flex-wrap: wrap;
    gap: 1rem;
    margin: 20px 0;
}
.suggestion {
    background-color: #1e293b;
    border-radius: 0.5rem;
    padding: 1rem;
    display: flex;
    align-items: center;
    transition: transform 0.3s ease;
    width: 200px;
}
.suggestion:hover {
    transform: translateY(-5px);
}
.suggestion-icon {
    font-size: 1.5rem;
    margin-right: 1rem;
    background-color: #2d3748;
    padding: 0.5rem;
    border-radius: 50%;
}
.gradio-container {
    max-width: 100% !important;
}
#component-0, #component-1, #component-2 {
    max-width: 100% !important;
}
footer {
    text-align: center;
    margin-top: 2rem;
    color: #64748b;
}
"""

# Custom HTML for the header
custom_header = """
<div id="custom-header">
    <h1>
        <span class="blue">Hello,</span>
        <span class="pink">User</span>
    </h1>
    <h2>How can I help you today?</h2>
</div>
"""

# Custom HTML for suggestions
custom_suggestions = """
<div class="suggestions">
    <div class="suggestion">
        <span class="suggestion-icon">🎤</span>
        <p>Speak in any Indic language</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">⌨️</span>
        <p>Type in any Indic language</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">🖼️</span>
        <p>Upload an image for analysis</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">🤖</span>
        <p>Get AI-generated responses</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">🔊</span>
        <p>Listen to audio responses</p>
    </div>
</div>
"""

# Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
    body_background_fill="#0b0f19",
    body_text_color="#e2e8f0",
    button_primary_background_fill="#3b82f6",
    button_primary_background_fill_hover="#2563eb",
    button_primary_text_color="white",
    block_title_text_color="#94a3b8",
    block_label_text_color="#94a3b8",
)) as iface:
    gr.HTML(custom_header)
    gr.HTML(custom_suggestions)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### Indic Vision Assistant")
    
    input_type = gr.Radio(["audio", "text", "image"], label="Input Type", value="audio")
    audio_input = gr.Audio(type="filepath", label="Speak (if audio input selected)")
    text_input = gr.Textbox(label="Type your message or image prompt")
    image_input = gr.Image(type="pil", label="Upload an image (if image input selected)")
    
    submit_btn = gr.Button("Submit")
    
    output_transcription = gr.Textbox(label="Transcription/Input")
    output_response = gr.Textbox(label="Generated Response")
    output_audio = gr.Audio(label="Audio Response")
    
    submit_btn.click(
        fn=indic_vision_assistant,
        inputs=[input_type, audio_input, text_input, image_input],
        outputs=[output_transcription, output_response, output_audio]
    )
    gr.HTML("<footer>Powered by Indic Language AI with Vision Capabilities</footer>")

# Launch the app
iface.launch()