Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,292 Bytes
0f965de 62a592a a5e055b 62a592a 0f965de a5e055b ee1adb0 a5e055b 62a592a 0f965de 62a592a a5e055b 0f965de 62a592a 0f965de d45486e 0f965de 62a592a 0f965de a5e055b 0f965de 62a592a a5e055b 62a592a a5e055b 62a592a a5e055b 62a592a a5e055b 11cd804 62a592a a5e055b 62a592a f073c65 a5e055b 11cd804 62a592a a5e055b f073c65 a5e055b 62a592a a5e055b 62a592a a5e055b 4c05f69 62a592a a5e055b 62a592a f073c65 a5e055b f073c65 a5e055b f073c65 a5e055b 4c05f69 a5e055b f073c65 a5e055b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import spaces
import gradio as gr
import torch
import os
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, AutoModelForCausalLM, AutoProcessor
from gtts import gTTS
from langdetect import detect
import subprocess
from io import BytesIO
# Install flash-attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Disable CUDA initialization at import
os.environ['CUDA_VISIBLE_DEVICES'] = ''
torch.set_grad_enabled(False)
print("CUDA initialization disabled at import")
@spaces.GPU
def load_whisper():
try:
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
return processor, model
except Exception as e:
print(f"Error loading Whisper model: {e}")
return None, None
@spaces.GPU
def load_vision_model():
try:
model_id = "microsoft/Phi-3.5-vision-instruct"
model = AutoModelForCausalLM.from_pretrained(
model_id, trust_remote_code=True, torch_dtype=torch.float16
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
return model, processor
except Exception as e:
print(f"Error loading vision model: {e}")
return None, None
@spaces.GPU
def load_sarvam():
try:
return pipeline('sarvamai/sarvam-2b-v0.5')
except Exception as e:
print(f"Error loading Sarvam model: {e}")
return None
@spaces.GPU
def process_audio(audio_path, whisper_processor, whisper_model):
import librosa
try:
audio, sr = librosa.load(audio_path, sr=16000)
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features
predicted_ids = whisper_model.generate(input_features)
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
except Exception as e:
return f"Error processing audio: {str(e)}"
@spaces.GPU
def process_image(image, text_prompt, vision_model, vision_processor):
try:
messages = [{"role": "user", "content": f"{text_prompt}\n<|image_1|>"}]
prompt = vision_processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = vision_processor(prompt, image, return_tensors="pt")
generate_ids = vision_model.generate(**inputs, max_new_tokens=1000, temperature=0.2, do_sample=True)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
return response
except Exception as e:
return f"Error processing image: {str(e)}"
@spaces.GPU
def generate_response(transcription, sarvam_pipe):
try:
response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text']
return response
except Exception as e:
return f"Error generating response: {str(e)}"
def text_to_speech(text, lang='hi'):
try:
tts = gTTS(text=text, lang=lang, tld='co.in')
tts.save("response.mp3")
return "response.mp3"
except Exception as e:
print(f"Error in text-to-speech: {str(e)}")
return None
@spaces.GPU
def indic_vision_assistant(input_type, audio_input, text_input, image_input):
try:
whisper_processor, whisper_model = load_whisper()
vision_model, vision_processor = load_vision_model()
sarvam_pipe = load_sarvam()
if input_type == "audio" and audio_input is not None:
transcription = process_audio(audio_input, whisper_processor, whisper_model)
elif input_type == "text" and text_input:
transcription = text_input
elif input_type == "image" and image_input is not None:
text_prompt = text_input if text_input else "Describe this image in detail."
transcription = process_image(image_input, text_prompt, vision_model, vision_processor)
else:
return "Please provide either audio, text, or image input.", "No input provided.", None
response = generate_response(transcription, sarvam_pipe)
lang = detect(response)
audio_response = text_to_speech(response, lang)
return transcription, response, audio_response
except Exception as e:
error_message = f"An error occurred: {str(e)}"
return error_message, error_message, None
# Custom CSS
custom_css = """
body {
background-color: #0b0f19;
color: #e2e8f0;
font-family: 'Arial', sans-serif;
}
#custom-header {
text-align: center;
padding: 20px 0;
background-color: #1a202c;
margin-bottom: 20px;
border-radius: 10px;
}
#custom-header h1 {
font-size: 2.5rem;
margin-bottom: 0.5rem;
}
#custom-header h1 .blue {
color: #60a5fa;
}
#custom-header h1 .pink {
color: #f472b6;
}
#custom-header h2 {
font-size: 1.5rem;
color: #94a3b8;
}
.suggestions {
display: flex;
justify-content: center;
flex-wrap: wrap;
gap: 1rem;
margin: 20px 0;
}
.suggestion {
background-color: #1e293b;
border-radius: 0.5rem;
padding: 1rem;
display: flex;
align-items: center;
transition: transform 0.3s ease;
width: 200px;
}
.suggestion:hover {
transform: translateY(-5px);
}
.suggestion-icon {
font-size: 1.5rem;
margin-right: 1rem;
background-color: #2d3748;
padding: 0.5rem;
border-radius: 50%;
}
.gradio-container {
max-width: 100% !important;
}
#component-0, #component-1, #component-2 {
max-width: 100% !important;
}
footer {
text-align: center;
margin-top: 2rem;
color: #64748b;
}
"""
# Custom HTML for the header
custom_header = """
<div id="custom-header">
<h1>
<span class="blue">Hello,</span>
<span class="pink">User</span>
</h1>
<h2>How can I help you today?</h2>
</div>
"""
# Custom HTML for suggestions
custom_suggestions = """
<div class="suggestions">
<div class="suggestion">
<span class="suggestion-icon">🎤</span>
<p>Speak in any Indic language</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">⌨️</span>
<p>Type in any Indic language</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">🖼️</span>
<p>Upload an image for analysis</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">🤖</span>
<p>Get AI-generated responses</p>
</div>
<div class="suggestion">
<span class="suggestion-icon">🔊</span>
<p>Listen to audio responses</p>
</div>
</div>
"""
# Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
body_background_fill="#0b0f19",
body_text_color="#e2e8f0",
button_primary_background_fill="#3b82f6",
button_primary_background_fill_hover="#2563eb",
button_primary_text_color="white",
block_title_text_color="#94a3b8",
block_label_text_color="#94a3b8",
)) as iface:
gr.HTML(custom_header)
gr.HTML(custom_suggestions)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Indic Vision Assistant")
input_type = gr.Radio(["audio", "text", "image"], label="Input Type", value="audio")
audio_input = gr.Audio(type="filepath", label="Speak (if audio input selected)")
text_input = gr.Textbox(label="Type your message or image prompt")
image_input = gr.Image(type="pil", label="Upload an image (if image input selected)")
submit_btn = gr.Button("Submit")
output_transcription = gr.Textbox(label="Transcription/Input")
output_response = gr.Textbox(label="Generated Response")
output_audio = gr.Audio(label="Audio Response")
submit_btn.click(
fn=indic_vision_assistant,
inputs=[input_type, audio_input, text_input, image_input],
outputs=[output_transcription, output_response, output_audio]
)
gr.HTML("<footer>Powered by Indic Language AI with Vision Capabilities</footer>")
# Launch the app
iface.launch() |