Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoProcessor, AutoModel # Keep CLIP for potential future use or if FastSAM's text prompt isn't enough | |
from PIL import Image, ImageDraw, ImageFont | |
import numpy as np | |
import random | |
import os | |
import wget # To download weights | |
import traceback # For detailed error printing | |
# --- Configuration & Model Loading --- | |
# Device Selection | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
# Force CPU if CUDA fails or isn't desired (sometimes needed on Spaces free tier) | |
# DEVICE = "cpu" | |
print(f"Using device: {DEVICE}") | |
# --- CLIP Setup (Kept in case needed, but FastSAM's method is primary now) --- | |
CLIP_MODEL_ID = "openai/clip-vit-base-patch32" | |
clip_processor = None | |
clip_model = None | |
def load_clip_model(): | |
global clip_processor, clip_model | |
if clip_processor is None: | |
try: | |
print(f"Loading CLIP processor: {CLIP_MODEL_ID}...") | |
clip_processor = AutoProcessor.from_pretrained(CLIP_MODEL_ID) | |
print("CLIP processor loaded.") | |
except Exception as e: | |
print(f"Error loading CLIP processor: {e}") | |
return False # Indicate failure | |
if clip_model is None: | |
try: | |
print(f"Loading CLIP model: {CLIP_MODEL_ID}...") | |
clip_model = AutoModel.from_pretrained(CLIP_MODEL_ID).to(DEVICE) | |
print(f"CLIP model loaded to {DEVICE}.") | |
except Exception as e: | |
print(f"Error loading CLIP model: {e}") | |
return False # Indicate failure | |
return True # Indicate success | |
# --- FastSAM Setup --- | |
FASTSAM_CHECKPOINT = "FastSAM-s.pt" | |
FASTSAM_CHECKPOINT_URL = f"https://huggingface.co/CASIA-IVA-Lab/FastSAM-s/resolve/main/{FASTSAM_CHECKPOINT}" | |
fastsam_model = None | |
fastsam_lib_imported = False # Flag to check if import worked | |
def check_and_import_fastsam(): | |
global fastsam_lib_imported | |
if not fastsam_lib_imported: | |
try: | |
from fastsam import FastSAM, FastSAMPrompt | |
globals()['FastSAM'] = FastSAM # Make classes available globally | |
globals()['FastSAMPrompt'] = FastSAMPrompt | |
fastsam_lib_imported = True | |
print("fastsam library imported successfully.") | |
except ImportError: | |
print("Error: 'fastsam' library not found or import failed.") | |
print("Please ensure 'fastsam' is installed correctly (pip install fastsam).") | |
fastsam_lib_imported = False | |
except Exception as e: | |
print(f"An unexpected error occurred during fastsam import: {e}") | |
traceback.print_exc() | |
fastsam_lib_imported = False | |
return fastsam_lib_imported | |
def download_fastsam_weights(): | |
if not os.path.exists(FASTSAM_CHECKPOINT): | |
print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...") | |
try: | |
wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT) | |
print("FastSAM weights downloaded.") | |
except Exception as e: | |
print(f"Error downloading FastSAM weights: {e}") | |
print("Please ensure the URL is correct and reachable, or manually place the weights file.") | |
if os.path.exists(FASTSAM_CHECKPOINT): | |
try: os.remove(FASTSAM_CHECKPOINT) | |
except OSError: pass | |
return False | |
return os.path.exists(FASTSAM_CHECKPOINT) | |
def load_fastsam_model(): | |
global fastsam_model | |
if fastsam_model is None: | |
if not check_and_import_fastsam(): | |
print("Cannot load FastSAM model because the library couldn't be imported.") | |
return False # Indicate failure | |
if download_fastsam_weights(): | |
try: | |
print(f"Loading FastSAM model: {FASTSAM_CHECKPOINT}...") | |
fastsam_model = FastSAM(FASTSAM_CHECKPOINT) | |
# The FastSAM model itself doesn't need explicit .to(DEVICE) | |
# It seems to handle device selection internally or via the prompt process | |
print(f"FastSAM model loaded.") | |
return True # Indicate success | |
except Exception as e: | |
print(f"Error loading FastSAM model: {e}") | |
traceback.print_exc() | |
else: | |
print("FastSAM weights not found or download failed. Cannot load model.") | |
return fastsam_model is not None # Return True if already loaded or loaded successfully | |
# --- Processing Functions --- | |
# (Keep run_clip_zero_shot and run_fastsam_segmentation as they were for the other tabs) | |
# CLIP Zero-Shot Classification Function | |
def run_clip_zero_shot(image: Image.Image, text_labels: str): | |
# Load CLIP if needed | |
if clip_model is None or clip_processor is None: | |
if not load_clip_model(): | |
return "Error: CLIP Model could not be loaded. Check logs.", None | |
if image is None: return "Please upload an image.", None | |
if not text_labels: return {}, image # Return empty dict, show image | |
labels = [label.strip() for label in text_labels.split(',') if label.strip()] | |
if not labels: return {}, image | |
print(f"Running CLIP zero-shot classification with labels: {labels}") | |
try: | |
if image.mode != "RGB": image = image.convert("RGB") | |
inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE) | |
with torch.no_grad(): | |
outputs = clip_model(**inputs) | |
probs = outputs.logits_per_image.softmax(dim=1) | |
print("CLIP processing complete.") | |
confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))} | |
return confidences, image | |
except Exception as e: | |
print(f"Error during CLIP processing: {e}") | |
traceback.print_exc() | |
return f"An error occurred during CLIP: {e}", image | |
# FastSAM Everything Segmentation Function (for the second tab) | |
def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9): | |
if not load_fastsam_model(): | |
return "Error: FastSAM Model not loaded. Check logs." | |
if not fastsam_lib_imported: | |
return "Error: FastSAM library not available." | |
if image_pil is None: return "Please upload an image." | |
print("Running FastSAM 'segment everything'...") | |
try: | |
if image_pil.mode != "RGB": image_pil = image_pil.convert("RGB") | |
image_np_rgb = np.array(image_pil) | |
everything_results = fastsam_model( | |
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640, | |
conf=conf_threshold, iou=iou_threshold, | |
) | |
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE) | |
ann = prompt_process.everything_prompt() | |
print(f"FastSAM 'everything' found {len(ann[0]['masks']) if ann and ann[0] and 'masks' in ann[0] else 0} masks.") | |
# Plotting | |
output_image = image_pil.copy() | |
if ann and ann[0] is not None and 'masks' in ann[0] and len(ann[0]['masks']) > 0: | |
masks = ann[0]['masks'].cpu().numpy() | |
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0)) | |
draw = ImageDraw.Draw(overlay) | |
for mask in masks: | |
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 128) | |
mask_image = Image.fromarray((mask * 255).astype(np.uint8), mode='L') | |
draw.bitmap((0, 0), mask_image, fill=color) | |
output_image = Image.alpha_composite(output_image.convert('RGBA'), overlay).convert('RGB') | |
print("FastSAM 'everything' processing complete.") | |
return output_image | |
except Exception as e: | |
print(f"Error during FastSAM 'everything' processing: {e}") | |
traceback.print_exc() | |
return f"An error occurred during FastSAM 'everything': {e}" | |
# --- NEW: Text-Prompted Segmentation Function --- | |
def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9): | |
"""Segments objects based on text prompts.""" | |
if not load_fastsam_model(): | |
return "Error: FastSAM Model not loaded. Check logs.", "No prompts provided." | |
if not fastsam_lib_imported: | |
return "Error: FastSAM library not available.", "FastSAM library error." | |
if image_pil is None: | |
return "Please upload an image.", "No image provided." | |
if not text_prompts: | |
return image_pil, "Please enter text prompts (e.g., 'person, dog')." # Return original image and message | |
prompts = [p.strip() for p in text_prompts.split(',') if p.strip()] | |
if not prompts: | |
return image_pil, "No valid text prompts entered." | |
print(f"Running FastSAM text-prompted segmentation for: {prompts}") | |
try: | |
if image_pil.mode != "RGB": | |
image_pil = image_pil.convert("RGB") | |
image_np_rgb = np.array(image_pil) | |
# 1. Run FastSAM once to get all potential results | |
# NOTE: We might optimize later, but this is the standard way FastSAMPrompt works. | |
everything_results = fastsam_model( | |
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640, | |
conf=conf_threshold, iou=iou_threshold, verbose=False # Less console spam | |
) | |
# 2. Create the prompt processor | |
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE) | |
# 3. Use text_prompt for each prompt and collect masks | |
all_matching_masks = [] | |
found_prompts = [] | |
for text in prompts: | |
print(f" Processing prompt: '{text}'") | |
# Ann is a list of dictionaries, one per image. We have one image. | |
# Each dict can have 'masks', 'bboxes', 'points'. | |
# text_prompt filters 'everything_results' based on CLIP-like similarity. | |
# It might return multiple masks if multiple instances match the text. | |
ann = prompt_process.text_prompt(text=text) | |
if ann and ann[0] is not None and 'masks' in ann[0] and len(ann[0]['masks']) > 0: | |
num_found = len(ann[0]['masks']) | |
print(f" Found {num_found} mask(s) matching '{text}'.") | |
found_prompts.append(f"{text} ({num_found})") | |
masks = ann[0]['masks'].cpu().numpy() # Get masks as numpy array (N, H, W) | |
all_matching_masks.extend(masks) # Add the numpy arrays to the list | |
else: | |
print(f" No masks found matching '{text}'.") | |
found_prompts.append(f"{text} (0)") | |
# 4. Plot the collected masks | |
output_image = image_pil.copy() | |
status_message = f"Found segments for: {', '.join(found_prompts)}" if found_prompts else "No matching segments found for any prompt." | |
if not all_matching_masks: | |
print("No matching masks found for any prompt.") | |
return output_image, status_message # Return original image if nothing matched | |
# Convert list of (H, W) masks to a single (N, H, W) array for consistent processing | |
masks_np = np.stack(all_matching_masks, axis=0) # Shape (TotalMasks, H, W) | |
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0)) | |
draw = ImageDraw.Draw(overlay) | |
for i in range(masks_np.shape[0]): | |
mask = masks_np[i] # Shape (H, W), boolean | |
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 150) # RGBA with slightly more alpha | |
mask_image = Image.fromarray((mask * 255).astype(np.uint8), mode='L') | |
draw.bitmap((0, 0), mask_image, fill=color) | |
output_image = Image.alpha_composite(output_image.convert('RGBA'), overlay).convert('RGB') | |
print("FastSAM text-prompted processing complete.") | |
return output_image, status_message | |
except Exception as e: | |
print(f"Error during FastSAM text-prompted processing: {e}") | |
traceback.print_exc() | |
return f"An error occurred: {e}", "Error during processing." | |
# --- Gradio Interface --- | |
print("Attempting to preload models...") | |
# load_clip_model() # Load CLIP lazily if needed | |
load_fastsam_model() # Load FastSAM eagerly | |
print("Preloading finished (or attempted).") | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# CLIP & FastSAM Demo") | |
gr.Markdown("Explore Zero-Shot Classification, 'Segment Everything', and Text-Prompted Segmentation.") | |
with gr.Tabs(): | |
# --- CLIP Tab (No changes) --- | |
with gr.TabItem("CLIP Zero-Shot Classification"): | |
# ... (keep the existing layout and logic for CLIP) ... | |
gr.Markdown("Upload an image and provide comma-separated candidate labels (e.g., 'cat, dog, car'). CLIP will predict the probability of the image matching each label.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
clip_input_image = gr.Image(type="pil", label="Input Image") | |
clip_text_labels = gr.Textbox(label="Comma-Separated Labels", placeholder="e.g., astronaut, moon, dog playing fetch") | |
clip_button = gr.Button("Run CLIP Classification", variant="primary") | |
with gr.Column(scale=1): | |
clip_output_label = gr.Label(label="Classification Probabilities") | |
clip_output_image_display = gr.Image(type="pil", label="Input Image Preview") | |
clip_button.click( | |
run_clip_zero_shot, | |
inputs=[clip_input_image, clip_text_labels], | |
outputs=[clip_output_label, clip_output_image_display] | |
) | |
gr.Examples( | |
examples=[ | |
["examples/astronaut.jpg", "astronaut, moon, rover, mountain"], | |
["examples/dog_bike.jpg", "dog, bicycle, person, park, grass"], | |
["examples/clip_logo.png", "logo, text, graphics, abstract art"], | |
], | |
inputs=[clip_input_image, clip_text_labels], | |
outputs=[clip_output_label, clip_output_image_display], fn=run_clip_zero_shot, cache_examples=False, | |
) | |
# --- FastSAM Everything Tab (No changes) --- | |
with gr.TabItem("FastSAM Segment Everything"): | |
# ... (keep the existing layout and logic for segment everything) ... | |
gr.Markdown("Upload an image. FastSAM will attempt to segment all objects/regions in the image.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
fastsam_input_image_all = gr.Image(type="pil", label="Input Image", elem_id="fastsam_input_all") # Unique elem_id if needed | |
with gr.Row(): | |
fastsam_conf_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold") | |
fastsam_iou_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold") | |
fastsam_button_all = gr.Button("Run FastSAM Segmentation", variant="primary") | |
with gr.Column(scale=1): | |
fastsam_output_image_all = gr.Image(type="pil", label="Segmented Image", elem_id="fastsam_output_all") | |
fastsam_button_all.click( | |
run_fastsam_segmentation, | |
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all], | |
outputs=[fastsam_output_image_all] | |
) | |
gr.Examples( | |
examples=[ | |
["examples/dogs.jpg", 0.4, 0.9], | |
["examples/fruits.jpg", 0.5, 0.8], | |
["examples/lion.jpg", 0.45, 0.9], | |
], | |
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all], | |
outputs=[fastsam_output_image_all], fn=run_fastsam_segmentation, cache_examples=False, | |
) | |
# --- NEW: Text-Prompted Segmentation Tab --- | |
with gr.TabItem("Text-Prompted Segmentation"): | |
gr.Markdown("Upload an image and provide comma-separated text prompts (e.g., 'person, dog, backpack'). FastSAM + CLIP (internally) will segment only the objects matching the text.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
prompt_input_image = gr.Image(type="pil", label="Input Image") | |
prompt_text_input = gr.Textbox(label="Comma-Separated Text Prompts", placeholder="e.g., glasses, watch, t-shirt") | |
with gr.Row(): # Reuse confidence/IoU sliders if desired | |
prompt_conf = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold") | |
prompt_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold") | |
prompt_button = gr.Button("Segment by Text", variant="primary") | |
with gr.Column(scale=1): | |
prompt_output_image = gr.Image(type="pil", label="Text-Prompted Segmentation") | |
prompt_status_message = gr.Textbox(label="Status", interactive=False) # To show which prompts matched | |
prompt_button.click( | |
run_text_prompted_segmentation, | |
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou], | |
outputs=[prompt_output_image, prompt_status_message] # Map to image and status box | |
) | |
gr.Examples( | |
examples=[ | |
["examples/dog_bike.jpg", "person, bicycle", 0.4, 0.9], | |
["examples/astronaut.jpg", "person, helmet", 0.35, 0.9], | |
["examples/dogs.jpg", "dog", 0.4, 0.9], # Should find multiple dogs | |
["examples/fruits.jpg", "banana, apple", 0.5, 0.8], | |
["examples/teacher.jpg", "person, glasses, blackboard", 0.4, 0.9], # Download this image or use another one with glasses/blackboard | |
], | |
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou], | |
outputs=[prompt_output_image, prompt_status_message], | |
fn=run_text_prompted_segmentation, | |
cache_examples=False, | |
) | |
# Ensure example images exist or are downloaded | |
# (Keep the existing example download logic, maybe add teacher.jpg if used in examples) | |
if not os.path.exists("examples"): | |
os.makedirs("examples") | |
print("Created 'examples' directory. Attempting to download sample images...") | |
example_files = { | |
"astronaut.jpg": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Astronaut_-_St._Jean_Bay.jpg/640px-Astronaut_-_St._Jean_Bay.jpg", | |
"dog_bike.jpg": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio/outputs_multimodal.jpg", | |
"clip_logo.png": "https://raw.githubusercontent.com/openai/CLIP/main/CLIP.png", | |
"dogs.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image8.jpg", | |
"fruits.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image9.jpg", | |
"lion.jpg": "https://huggingface.co/spaces/gradio/image-segmentation/resolve/main/images/lion.jpg", | |
"teacher.jpg": "https://images.pexels.com/photos/848117/pexels-photo-848117.jpeg?auto=compress&cs=tinysrgb&w=600" # Example with glasses/board | |
} | |
for filename, url in example_files.items(): | |
filepath = os.path.join("examples", filename) | |
if not os.path.exists(filepath): | |
try: | |
print(f"Downloading {filename}...") | |
wget.download(url, filepath) | |
except Exception as e: | |
print(f"Could not download {filename} from {url}: {e}") | |
print("Example image download attempt finished.") | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
demo.launch(debug=True) # debug=True is helpful locally |