File size: 19,982 Bytes
dfdcd97
a3ee867
23fa119
b066832
fd55cab
b066832
eefe5b4
b066832
eba2946
b066832
 
 
 
 
23fa119
 
b066832
 
23fa119
b066832
 
 
 
 
 
 
23fa119
 
 
 
 
 
 
b066832
23fa119
 
 
 
 
 
 
 
 
b066832
 
 
eba2946
b066832
 
eba2946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fa119
eba2946
 
 
b066832
 
 
eba2946
b066832
 
 
 
 
 
eba2946
23fa119
 
b066832
 
 
 
 
 
23fa119
eba2946
23fa119
eba2946
23fa119
b066832
 
 
23fa119
 
 
 
b066832
 
eba2946
b066832
eba2946
23fa119
c95f3e0
3cd1243
b066832
6facde6
23fa119
b066832
 
23fa119
b066832
23fa119
 
6facde6
23fa119
 
6facde6
23fa119
 
6facde6
b066832
 
23fa119
b066832
 
 
23fa119
b066832
 
eba2946
6facde6
b066832
eba2946
 
6facde6
23fa119
b066832
23fa119
 
eba2946
23fa119
 
 
 
 
 
 
eba2946
23fa119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b066832
23fa119
 
 
e0d4d2f
23fa119
 
 
 
 
6facde6
3d6a9c7
b066832
 
 
72f4c5c
23fa119
 
b066832
23fa119
 
b066832
6facde6
23fa119
b066832
6facde6
23fa119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b066832
23fa119
eba2946
23fa119
 
 
6facde6
23fa119
 
6facde6
23fa119
 
6facde6
23fa119
 
 
 
 
 
 
 
 
 
6facde6
eefe5b4
23fa119
eba2946
23fa119
b066832
6facde6
 
e0d4d2f
b066832
23fa119
 
b066832
 
 
 
 
23fa119
b066832
 
23fa119
b066832
23fa119
b066832
 
 
 
eba2946
b066832
 
 
eba2946
b066832
 
 
 
 
 
 
 
 
23fa119
b066832
 
23fa119
eefe5b4
6facde6
23fa119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b066832
 
23fa119
 
 
 
 
 
b066832
23fa119
 
b066832
23fa119
 
 
 
b066832
 
 
23fa119
 
 
 
 
b066832
23fa119
 
 
eba2946
b066832
6facde6
23fa119
 
b066832
 
eba2946
 
23fa119
 
 
 
 
 
 
eba2946
 
 
 
 
 
 
 
 
 
b066832
 
 
 
23fa119
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import gradio as gr
import torch
from transformers import AutoProcessor, AutoModel # Keep CLIP for potential future use or if FastSAM's text prompt isn't enough
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import random
import os
import wget # To download weights
import traceback # For detailed error printing

# --- Configuration & Model Loading ---

# Device Selection
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Force CPU if CUDA fails or isn't desired (sometimes needed on Spaces free tier)
# DEVICE = "cpu"
print(f"Using device: {DEVICE}")

# --- CLIP Setup (Kept in case needed, but FastSAM's method is primary now) ---
CLIP_MODEL_ID = "openai/clip-vit-base-patch32"
clip_processor = None
clip_model = None

def load_clip_model():
    global clip_processor, clip_model
    if clip_processor is None:
        try:
            print(f"Loading CLIP processor: {CLIP_MODEL_ID}...")
            clip_processor = AutoProcessor.from_pretrained(CLIP_MODEL_ID)
            print("CLIP processor loaded.")
        except Exception as e:
            print(f"Error loading CLIP processor: {e}")
            return False # Indicate failure
    if clip_model is None:
        try:
            print(f"Loading CLIP model: {CLIP_MODEL_ID}...")
            clip_model = AutoModel.from_pretrained(CLIP_MODEL_ID).to(DEVICE)
            print(f"CLIP model loaded to {DEVICE}.")
        except Exception as e:
            print(f"Error loading CLIP model: {e}")
            return False # Indicate failure
    return True # Indicate success


# --- FastSAM Setup ---
FASTSAM_CHECKPOINT = "FastSAM-s.pt"
FASTSAM_CHECKPOINT_URL = f"https://huggingface.co/CASIA-IVA-Lab/FastSAM-s/resolve/main/{FASTSAM_CHECKPOINT}"

fastsam_model = None
fastsam_lib_imported = False # Flag to check if import worked

def check_and_import_fastsam():
    global fastsam_lib_imported
    if not fastsam_lib_imported:
        try:
            from fastsam import FastSAM, FastSAMPrompt
            globals()['FastSAM'] = FastSAM # Make classes available globally
            globals()['FastSAMPrompt'] = FastSAMPrompt
            fastsam_lib_imported = True
            print("fastsam library imported successfully.")
        except ImportError:
            print("Error: 'fastsam' library not found or import failed.")
            print("Please ensure 'fastsam' is installed correctly (pip install fastsam).")
            fastsam_lib_imported = False
        except Exception as e:
            print(f"An unexpected error occurred during fastsam import: {e}")
            traceback.print_exc()
            fastsam_lib_imported = False
    return fastsam_lib_imported


def download_fastsam_weights():
    if not os.path.exists(FASTSAM_CHECKPOINT):
        print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...")
        try:
            wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT)
            print("FastSAM weights downloaded.")
        except Exception as e:
            print(f"Error downloading FastSAM weights: {e}")
            print("Please ensure the URL is correct and reachable, or manually place the weights file.")
            if os.path.exists(FASTSAM_CHECKPOINT):
                 try: os.remove(FASTSAM_CHECKPOINT)
                 except OSError: pass
            return False
    return os.path.exists(FASTSAM_CHECKPOINT)

def load_fastsam_model():
    global fastsam_model
    if fastsam_model is None:
        if not check_and_import_fastsam():
             print("Cannot load FastSAM model because the library couldn't be imported.")
             return False # Indicate failure

        if download_fastsam_weights():
            try:
                print(f"Loading FastSAM model: {FASTSAM_CHECKPOINT}...")
                fastsam_model = FastSAM(FASTSAM_CHECKPOINT)
                # The FastSAM model itself doesn't need explicit .to(DEVICE)
                # It seems to handle device selection internally or via the prompt process
                print(f"FastSAM model loaded.")
                return True # Indicate success
            except Exception as e:
                print(f"Error loading FastSAM model: {e}")
                traceback.print_exc()
        else:
            print("FastSAM weights not found or download failed. Cannot load model.")
    return fastsam_model is not None # Return True if already loaded or loaded successfully


# --- Processing Functions ---

# (Keep run_clip_zero_shot and run_fastsam_segmentation as they were for the other tabs)
# CLIP Zero-Shot Classification Function
def run_clip_zero_shot(image: Image.Image, text_labels: str):
    # Load CLIP if needed
    if clip_model is None or clip_processor is None:
        if not load_clip_model():
            return "Error: CLIP Model could not be loaded. Check logs.", None

    if image is None: return "Please upload an image.", None
    if not text_labels: return {}, image # Return empty dict, show image

    labels = [label.strip() for label in text_labels.split(',') if label.strip()]
    if not labels: return {}, image

    print(f"Running CLIP zero-shot classification with labels: {labels}")
    try:
        if image.mode != "RGB": image = image.convert("RGB")
        inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE)
        with torch.no_grad():
            outputs = clip_model(**inputs)
            probs = outputs.logits_per_image.softmax(dim=1)
        print("CLIP processing complete.")
        confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))}
        return confidences, image
    except Exception as e:
        print(f"Error during CLIP processing: {e}")
        traceback.print_exc()
        return f"An error occurred during CLIP: {e}", image

# FastSAM Everything Segmentation Function (for the second tab)
def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
    if not load_fastsam_model():
        return "Error: FastSAM Model not loaded. Check logs."
    if not fastsam_lib_imported:
        return "Error: FastSAM library not available."
    if image_pil is None: return "Please upload an image."

    print("Running FastSAM 'segment everything'...")
    try:
        if image_pil.mode != "RGB": image_pil = image_pil.convert("RGB")
        image_np_rgb = np.array(image_pil)

        everything_results = fastsam_model(
            image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640,
            conf=conf_threshold, iou=iou_threshold,
        )
        prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
        ann = prompt_process.everything_prompt()
        print(f"FastSAM 'everything' found {len(ann[0]['masks']) if ann and ann[0] and 'masks' in ann[0] else 0} masks.")

        # Plotting
        output_image = image_pil.copy()
        if ann and ann[0] is not None and 'masks' in ann[0] and len(ann[0]['masks']) > 0:
            masks = ann[0]['masks'].cpu().numpy()
            overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
            draw = ImageDraw.Draw(overlay)
            for mask in masks:
                color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 128)
                mask_image = Image.fromarray((mask * 255).astype(np.uint8), mode='L')
                draw.bitmap((0, 0), mask_image, fill=color)
            output_image = Image.alpha_composite(output_image.convert('RGBA'), overlay).convert('RGB')

        print("FastSAM 'everything' processing complete.")
        return output_image

    except Exception as e:
        print(f"Error during FastSAM 'everything' processing: {e}")
        traceback.print_exc()
        return f"An error occurred during FastSAM 'everything': {e}"


# --- NEW: Text-Prompted Segmentation Function ---
def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
    """Segments objects based on text prompts."""
    if not load_fastsam_model():
        return "Error: FastSAM Model not loaded. Check logs.", "No prompts provided."
    if not fastsam_lib_imported:
        return "Error: FastSAM library not available.", "FastSAM library error."
    if image_pil is None:
        return "Please upload an image.", "No image provided."
    if not text_prompts:
        return image_pil, "Please enter text prompts (e.g., 'person, dog')." # Return original image and message

    prompts = [p.strip() for p in text_prompts.split(',') if p.strip()]
    if not prompts:
        return image_pil, "No valid text prompts entered."

    print(f"Running FastSAM text-prompted segmentation for: {prompts}")

    try:
        if image_pil.mode != "RGB":
            image_pil = image_pil.convert("RGB")
        image_np_rgb = np.array(image_pil)

        # 1. Run FastSAM once to get all potential results
        # NOTE: We might optimize later, but this is the standard way FastSAMPrompt works.
        everything_results = fastsam_model(
            image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640,
            conf=conf_threshold, iou=iou_threshold, verbose=False # Less console spam
        )

        # 2. Create the prompt processor
        prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)

        # 3. Use text_prompt for each prompt and collect masks
        all_matching_masks = []
        found_prompts = []

        for text in prompts:
            print(f"  Processing prompt: '{text}'")
            # Ann is a list of dictionaries, one per image. We have one image.
            # Each dict can have 'masks', 'bboxes', 'points'.
            # text_prompt filters 'everything_results' based on CLIP-like similarity.
            # It might return multiple masks if multiple instances match the text.
            ann = prompt_process.text_prompt(text=text)

            if ann and ann[0] is not None and 'masks' in ann[0] and len(ann[0]['masks']) > 0:
                num_found = len(ann[0]['masks'])
                print(f"    Found {num_found} mask(s) matching '{text}'.")
                found_prompts.append(f"{text} ({num_found})")
                masks = ann[0]['masks'].cpu().numpy() # Get masks as numpy array (N, H, W)
                all_matching_masks.extend(masks) # Add the numpy arrays to the list
            else:
                print(f"    No masks found matching '{text}'.")
                found_prompts.append(f"{text} (0)")

        # 4. Plot the collected masks
        output_image = image_pil.copy()
        status_message = f"Found segments for: {', '.join(found_prompts)}" if found_prompts else "No matching segments found for any prompt."

        if not all_matching_masks:
            print("No matching masks found for any prompt.")
            return output_image, status_message # Return original image if nothing matched

        # Convert list of (H, W) masks to a single (N, H, W) array for consistent processing
        masks_np = np.stack(all_matching_masks, axis=0) # Shape (TotalMasks, H, W)

        overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
        draw = ImageDraw.Draw(overlay)

        for i in range(masks_np.shape[0]):
            mask = masks_np[i] # Shape (H, W), boolean
            color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 150) # RGBA with slightly more alpha
            mask_image = Image.fromarray((mask * 255).astype(np.uint8), mode='L')
            draw.bitmap((0, 0), mask_image, fill=color)

        output_image = Image.alpha_composite(output_image.convert('RGBA'), overlay).convert('RGB')

        print("FastSAM text-prompted processing complete.")
        return output_image, status_message

    except Exception as e:
        print(f"Error during FastSAM text-prompted processing: {e}")
        traceback.print_exc()
        return f"An error occurred: {e}", "Error during processing."


# --- Gradio Interface ---

print("Attempting to preload models...")
# load_clip_model() # Load CLIP lazily if needed
load_fastsam_model() # Load FastSAM eagerly
print("Preloading finished (or attempted).")


with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# CLIP & FastSAM Demo")
    gr.Markdown("Explore Zero-Shot Classification, 'Segment Everything', and Text-Prompted Segmentation.")

    with gr.Tabs():
        # --- CLIP Tab (No changes) ---
        with gr.TabItem("CLIP Zero-Shot Classification"):
            # ... (keep the existing layout and logic for CLIP) ...
            gr.Markdown("Upload an image and provide comma-separated candidate labels (e.g., 'cat, dog, car'). CLIP will predict the probability of the image matching each label.")
            with gr.Row():
                with gr.Column(scale=1):
                    clip_input_image = gr.Image(type="pil", label="Input Image")
                    clip_text_labels = gr.Textbox(label="Comma-Separated Labels", placeholder="e.g., astronaut, moon, dog playing fetch")
                    clip_button = gr.Button("Run CLIP Classification", variant="primary")
                with gr.Column(scale=1):
                    clip_output_label = gr.Label(label="Classification Probabilities")
                    clip_output_image_display = gr.Image(type="pil", label="Input Image Preview")
            clip_button.click(
                run_clip_zero_shot,
                inputs=[clip_input_image, clip_text_labels],
                outputs=[clip_output_label, clip_output_image_display]
            )
            gr.Examples(
                examples=[
                    ["examples/astronaut.jpg", "astronaut, moon, rover, mountain"],
                    ["examples/dog_bike.jpg", "dog, bicycle, person, park, grass"],
                    ["examples/clip_logo.png", "logo, text, graphics, abstract art"],
                ],
                inputs=[clip_input_image, clip_text_labels],
                outputs=[clip_output_label, clip_output_image_display], fn=run_clip_zero_shot, cache_examples=False,
            )


        # --- FastSAM Everything Tab (No changes) ---
        with gr.TabItem("FastSAM Segment Everything"):
            # ... (keep the existing layout and logic for segment everything) ...
             gr.Markdown("Upload an image. FastSAM will attempt to segment all objects/regions in the image.")
             with gr.Row():
                 with gr.Column(scale=1):
                     fastsam_input_image_all = gr.Image(type="pil", label="Input Image", elem_id="fastsam_input_all") # Unique elem_id if needed
                     with gr.Row():
                         fastsam_conf_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
                         fastsam_iou_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
                     fastsam_button_all = gr.Button("Run FastSAM Segmentation", variant="primary")
                 with gr.Column(scale=1):
                     fastsam_output_image_all = gr.Image(type="pil", label="Segmented Image", elem_id="fastsam_output_all")
             fastsam_button_all.click(
                 run_fastsam_segmentation,
                 inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
                 outputs=[fastsam_output_image_all]
             )
             gr.Examples(
                 examples=[
                     ["examples/dogs.jpg", 0.4, 0.9],
                     ["examples/fruits.jpg", 0.5, 0.8],
                     ["examples/lion.jpg", 0.45, 0.9],
                 ],
                 inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
                 outputs=[fastsam_output_image_all], fn=run_fastsam_segmentation, cache_examples=False,
             )

        # --- NEW: Text-Prompted Segmentation Tab ---
        with gr.TabItem("Text-Prompted Segmentation"):
            gr.Markdown("Upload an image and provide comma-separated text prompts (e.g., 'person, dog, backpack'). FastSAM + CLIP (internally) will segment only the objects matching the text.")
            with gr.Row():
                with gr.Column(scale=1):
                    prompt_input_image = gr.Image(type="pil", label="Input Image")
                    prompt_text_input = gr.Textbox(label="Comma-Separated Text Prompts", placeholder="e.g., glasses, watch, t-shirt")
                    with gr.Row(): # Reuse confidence/IoU sliders if desired
                        prompt_conf = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
                        prompt_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
                    prompt_button = gr.Button("Segment by Text", variant="primary")
                with gr.Column(scale=1):
                    prompt_output_image = gr.Image(type="pil", label="Text-Prompted Segmentation")
                    prompt_status_message = gr.Textbox(label="Status", interactive=False) # To show which prompts matched

            prompt_button.click(
                run_text_prompted_segmentation,
                inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
                outputs=[prompt_output_image, prompt_status_message] # Map to image and status box
            )
            gr.Examples(
                examples=[
                    ["examples/dog_bike.jpg", "person, bicycle", 0.4, 0.9],
                    ["examples/astronaut.jpg", "person, helmet", 0.35, 0.9],
                    ["examples/dogs.jpg", "dog", 0.4, 0.9], # Should find multiple dogs
                    ["examples/fruits.jpg", "banana, apple", 0.5, 0.8],
                    ["examples/teacher.jpg", "person, glasses, blackboard", 0.4, 0.9], # Download this image or use another one with glasses/blackboard
                ],
                inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
                outputs=[prompt_output_image, prompt_status_message],
                fn=run_text_prompted_segmentation,
                cache_examples=False,
            )

    # Ensure example images exist or are downloaded
    # (Keep the existing example download logic, maybe add teacher.jpg if used in examples)
    if not os.path.exists("examples"):
        os.makedirs("examples")
        print("Created 'examples' directory. Attempting to download sample images...")
        example_files = {
             "astronaut.jpg": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Astronaut_-_St._Jean_Bay.jpg/640px-Astronaut_-_St._Jean_Bay.jpg",
             "dog_bike.jpg": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio/outputs_multimodal.jpg",
             "clip_logo.png": "https://raw.githubusercontent.com/openai/CLIP/main/CLIP.png",
             "dogs.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image8.jpg",
             "fruits.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image9.jpg",
             "lion.jpg": "https://huggingface.co/spaces/gradio/image-segmentation/resolve/main/images/lion.jpg",
             "teacher.jpg": "https://images.pexels.com/photos/848117/pexels-photo-848117.jpeg?auto=compress&cs=tinysrgb&w=600" # Example with glasses/board
        }
        for filename, url in example_files.items():
             filepath = os.path.join("examples", filename)
             if not os.path.exists(filepath):
                 try:
                     print(f"Downloading {filename}...")
                     wget.download(url, filepath)
                 except Exception as e:
                     print(f"Could not download {filename} from {url}: {e}")
        print("Example image download attempt finished.")


# Launch the Gradio app
if __name__ == "__main__":
    demo.launch(debug=True) # debug=True is helpful locally