SegmentVision / app.py
sagar007's picture
Update app.py
2d0f294 verified
raw
history blame
30.4 kB
import gradio as gr
import torch
from transformers import AutoProcessor, AutoModel
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import random
import os
import wget
import traceback
# --- Configuration & Model Loading ---
# Device Selection with fallback
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Simplified check
print(f"Using device: {DEVICE}")
# --- CLIP Setup ---
CLIP_MODEL_ID = "openai/clip-vit-base-patch32"
clip_processor = None
clip_model = None
def load_clip_model():
global clip_processor, clip_model
if clip_processor is None:
try:
print(f"Loading CLIP processor: {CLIP_MODEL_ID}...")
clip_processor = AutoProcessor.from_pretrained(CLIP_MODEL_ID)
print("CLIP processor loaded.")
except Exception as e:
print(f"Error loading CLIP processor: {e}")
traceback.print_exc() # Print traceback
return False
if clip_model is None:
try:
print(f"Loading CLIP model: {CLIP_MODEL_ID}...")
clip_model = AutoModel.from_pretrained(CLIP_MODEL_ID).to(DEVICE)
print(f"CLIP model loaded to {DEVICE}.")
except Exception as e:
print(f"Error loading CLIP model: {e}")
traceback.print_exc() # Print traceback
return False
return True
# --- FastSAM Setup ---
FASTSAM_CHECKPOINT = "FastSAM-s.pt"
FASTSAM_CHECKPOINT_URL = f"https://huggingface.co/CASIA-IVA-Lab/FastSAM-s/resolve/main/{FASTSAM_CHECKPOINT}"
fastsam_model = None
fastsam_lib_imported = False
FastSAM = None # Define placeholders
FastSAMPrompt = None # Define placeholders
def check_and_import_fastsam():
global fastsam_lib_imported, FastSAM, FastSAMPrompt # Make sure globals are modified
if not fastsam_lib_imported:
try:
from fastsam import FastSAM as FastSAM_lib, FastSAMPrompt as FastSAMPrompt_lib # Use temp names
FastSAM = FastSAM_lib # Assign to global
FastSAMPrompt = FastSAMPrompt_lib # Assign to global
fastsam_lib_imported = True
print("fastsam library imported successfully.")
except ImportError as e:
print(f"Error: 'fastsam' library not found. Please install it: pip install git+https://github.com/CASIA-IVA-Lab/FastSAM.git")
print(f"ImportError: {e}")
fastsam_lib_imported = False
except Exception as e:
print(f"Unexpected error during fastsam import: {e}")
traceback.print_exc()
fastsam_lib_imported = False
return fastsam_lib_imported
def download_fastsam_weights(retries=3):
if not os.path.exists(FASTSAM_CHECKPOINT):
print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...")
for attempt in range(retries):
try:
# Ensure the directory exists if FASTSAM_CHECKPOINT includes a path
os.makedirs(os.path.dirname(FASTSAM_CHECKPOINT) or '.', exist_ok=True)
wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT)
print("FastSAM weights downloaded.")
return True # Return True on successful download
except Exception as e:
print(f"Attempt {attempt + 1}/{retries} failed to download FastSAM weights: {e}")
if os.path.exists(FASTSAM_CHECKPOINT): # Cleanup partial download
try:
os.remove(FASTSAM_CHECKPOINT)
except OSError:
pass
if attempt + 1 == retries:
print("Failed to download weights after all attempts.")
return False
return False # Should not be reached if loop completes, but added for clarity
else:
print("FastSAM weights already exist.")
return True # Weights exist
def load_fastsam_model():
global fastsam_model
if fastsam_model is None:
if not check_and_import_fastsam():
print("Cannot load FastSAM model due to library import failure.")
return False
if download_fastsam_weights():
# Ensure FastSAM class is available (might fail if import failed earlier but file exists)
if FastSAM is None:
print("FastSAM class not available, check import status.")
return False
try:
print(f"Loading FastSAM model: {FASTSAM_CHECKPOINT}...")
# Instantiate the imported class
fastsam_model = FastSAM(FASTSAM_CHECKPOINT)
# Move model to device *after* initialization (common practice)
# Note: Check FastSAM docs if it needs explicit .to(DEVICE) or handles it internally
# fastsam_model.model.to(DEVICE) # Example if needed, adjust based on FastSAM structure
print("FastSAM model loaded.")
return True
except Exception as e:
print(f"Error loading FastSAM model weights or initializing: {e}")
traceback.print_exc()
return False
else:
print("FastSAM weights not found or download failed.")
return False
# Model already loaded
return True
# --- Processing Functions ---
def run_clip_zero_shot(image: Image.Image, text_labels: str):
# Keep CLIP as is, seems less likely to be the primary issue
if not isinstance(image, Image.Image):
print(f"CLIP input is not a PIL Image, type: {type(image)}")
# Try to convert if it's a numpy array (common from Gradio)
if isinstance(image, np.ndarray):
try:
image = Image.fromarray(image)
print("Converted numpy input to PIL Image for CLIP.")
except Exception as e:
print(f"Failed to convert numpy array to PIL Image: {e}")
return "Error: Invalid image input format.", None
else:
return "Error: Please provide a valid image.", None
if clip_model is None or clip_processor is None:
if not load_clip_model():
# Return None for the image part on critical error
return "Error: CLIP Model could not be loaded.", None
if not text_labels:
# Return empty dict and original image if no labels
return {}, image
labels = [label.strip() for label in text_labels.split(',') if label.strip()]
if not labels:
# Return empty dict and original image if no valid labels
return {}, image
print(f"Running CLIP zero-shot classification with labels: {labels}")
try:
# Ensure image is RGB
if image.mode != "RGB":
print(f"Converting image from {image.mode} to RGB for CLIP.")
image = image.convert("RGB")
inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE)
with torch.no_grad():
outputs = clip_model(**inputs)
# Calculate probabilities
logits_per_image = outputs.logits_per_image # B x N_labels
probs = logits_per_image.softmax(dim=1) # Softmax over labels
# Create confidences dictionary
confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))}
print(f"CLIP Confidences: {confidences}")
# Return confidences and the original (potentially converted) image
return confidences, image
except Exception as e:
print(f"Error during CLIP processing: {e}")
traceback.print_exc()
# Return error message and None for image
return f"Error during CLIP processing: {e}", None
def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
# Add input type check
if not isinstance(image_pil, Image.Image):
print(f"FastSAM input is not a PIL Image, type: {type(image_pil)}")
if isinstance(image_pil, np.ndarray):
try:
image_pil = Image.fromarray(image_pil)
print("Converted numpy input to PIL Image for FastSAM.")
except Exception as e:
print(f"Failed to convert numpy array to PIL Image: {e}")
# Return None for image on error
return None, "Error: Invalid image input format." # Return tuple for consistency
else:
# Return None for image on error
return None, "Error: Please provide a valid image." # Return tuple
# Ensure model is loaded
if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None:
# Return None for image on critical error
return None, "Error: FastSAM not loaded or library unavailable."
print(f"Running FastSAM 'segment everything' with conf={conf_threshold}, iou={iou_threshold}...")
output_image = None # Initialize output image
status_message = "Processing..." # Initial status
try:
# Ensure image is RGB
if image_pil.mode != "RGB":
print(f"Converting image from {image_pil.mode} to RGB for FastSAM.")
image_pil_rgb = image_pil.convert("RGB")
else:
image_pil_rgb = image_pil
# Convert PIL Image to NumPy array (RGB)
image_np_rgb = np.array(image_pil_rgb)
print(f"Input image shape for FastSAM: {image_np_rgb.shape}")
# Run FastSAM model
# Make sure the arguments match what FastSAM expects
everything_results = fastsam_model(
image_np_rgb,
device=DEVICE,
retina_masks=True,
imgsz=640, # Or another size FastSAM supports
conf=conf_threshold,
iou=iou_threshold,
verbose=True # Keep verbose for debugging
)
# Check if results are valid before creating prompt
if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0:
print("FastSAM model returned None or empty results.")
# Return original image and status
return image_pil, "FastSAM did not return valid results."
# Results might be in a different format, inspect 'everything_results'
print(f"Type of everything_results: {type(everything_results)}")
print(f"Length of everything_results: {len(everything_results)}")
if len(everything_results) > 0:
print(f"Type of first element: {type(everything_results[0])}")
# Try to access potential attributes like 'masks' if it's an object
if hasattr(everything_results[0], 'masks') and everything_results[0].masks is not None:
print(f"Masks found in results object, shape: {everything_results[0].masks.data.shape}")
else:
print("First result element does not have 'masks' attribute or it's None.")
# Process results with FastSAMPrompt
# Ensure FastSAMPrompt class is available
if FastSAMPrompt is None:
print("FastSAMPrompt class is not available.")
return image_pil, "Error: FastSAMPrompt class not loaded."
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
ann = prompt_process.everything_prompt() # Get all annotations
# Check annotation format - Adjust based on actual FastSAM output structure
# Assuming 'ann' is a list and the first element is a dictionary containing masks
masks = None
if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]:
mask_tensor = ann[0]['masks']
if mask_tensor is not None and mask_tensor.numel() > 0: # Check if tensor is not None and not empty
masks = mask_tensor.cpu().numpy()
print(f"Found {len(masks)} masks with shape: {masks.shape}")
else:
print("Annotation 'masks' tensor is None or empty.")
else:
print(f"No masks found or annotation format unexpected. ann type: {type(ann)}")
if isinstance(ann, list) and len(ann) > 0:
print(f"First element of ann: {ann[0]}")
# Prepare output image (start with original)
output_image = image_pil.copy()
# Draw masks if found
if masks is not None and len(masks) > 0:
# Ensure output_image is RGBA for compositing
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
for i, mask in enumerate(masks):
# Ensure mask is boolean/binary before converting
binary_mask = (mask > 0) # Use threshold 0 for binary mask from FastSAM output
mask_uint8 = binary_mask.astype(np.uint8) * 255
if mask_uint8.max() == 0: # Skip empty masks
# print(f"Skipping empty mask {i}")
continue
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180) # RGBA color
try:
mask_image = Image.fromarray(mask_uint8, mode='L') # Grayscale mask
# Draw the mask onto the overlay
draw.bitmap((0, 0), mask_image, fill=color)
except Exception as draw_err:
print(f"Error drawing mask {i}: {draw_err}")
traceback.print_exc()
continue # Skip this mask
# Composite the overlay onto the image
try:
output_image_rgba = output_image.convert('RGBA')
output_image_composited = Image.alpha_composite(output_image_rgba, overlay)
output_image = output_image_composited.convert('RGB') # Convert back to RGB for Gradio
status_message = f"Segmentation complete. Found {len(masks)} masks."
print("Mask drawing and compositing finished.")
except Exception as comp_err:
print(f"Error during alpha compositing: {comp_err}")
traceback.print_exc()
output_image = image_pil # Fallback to original image
status_message = "Error during mask visualization."
else:
print("No masks detected or processed for 'segment everything' mode.")
status_message = "No segments found or processed."
output_image = image_pil # Return original image if no masks
# Save for debugging before returning
if output_image:
try:
debug_path = "debug_fastsam_everything_output.png"
output_image.save(debug_path)
print(f"Saved debug output to {debug_path}")
except Exception as save_err:
print(f"Failed to save debug image: {save_err}")
return output_image, status_message # Return image and status message
except Exception as e:
print(f"Error during FastSAM 'everything' processing: {e}")
traceback.print_exc()
# Return original image and error message in case of failure
return image_pil, f"Error during processing: {e}"
def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
# Add input type check
if not isinstance(image_pil, Image.Image):
print(f"FastSAM Text input is not a PIL Image, type: {type(image_pil)}")
if isinstance(image_pil, np.ndarray):
try:
image_pil = Image.fromarray(image_pil)
print("Converted numpy input to PIL Image for FastSAM Text.")
except Exception as e:
print(f"Failed to convert numpy array to PIL Image: {e}")
return None, "Error: Invalid image input format."
else:
return None, "Error: Please provide a valid image."
# Ensure model is loaded
if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None:
return image_pil, "Error: FastSAM Model not loaded or library unavailable." # Return original image on load fail
if not text_prompts:
return image_pil, "Please enter text prompts (e.g., 'person, dog')."
prompts = [p.strip() for p in text_prompts.split(',') if p.strip()]
if not prompts:
return image_pil, "No valid text prompts entered."
print(f"Running FastSAM text-prompted segmentation for: {prompts} with conf={conf_threshold}, iou={iou_threshold}")
output_image = None
status_message = "Processing..."
try:
# Ensure image is RGB
if image_pil.mode != "RGB":
print(f"Converting image from {image_pil.mode} to RGB for FastSAM.")
image_pil_rgb = image_pil.convert("RGB")
else:
image_pil_rgb = image_pil
image_np_rgb = np.array(image_pil_rgb)
print(f"Input image shape for FastSAM Text: {image_np_rgb.shape}")
# Run FastSAM once to get all potential segments
everything_results = fastsam_model(
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640, # Use consistent args
conf=conf_threshold, iou=iou_threshold, verbose=True
)
# Check results
if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0:
print("FastSAM model returned None or empty results for text prompt base.")
return image_pil, "FastSAM did not return base results."
# Initialize FastSAMPrompt
if FastSAMPrompt is None:
print("FastSAMPrompt class is not available.")
return image_pil, "Error: FastSAMPrompt class not loaded."
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
all_matching_masks = []
found_prompts_details = [] # Store details like 'prompt (count)'
# Process each text prompt
for text in prompts:
print(f" Processing prompt: '{text}'")
# Get annotation for the specific text prompt
ann = prompt_process.text_prompt(text=text)
# Check annotation format and extract masks
current_masks = None
num_found = 0
# Adjust check based on actual structure of 'ann' for text_prompt
if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]:
mask_tensor = ann[0]['masks']
if mask_tensor is not None and mask_tensor.numel() > 0:
current_masks = mask_tensor.cpu().numpy()
num_found = len(current_masks)
print(f" Found {num_found} mask(s) for '{text}'. Shape: {current_masks.shape}")
all_matching_masks.extend(current_masks) # Add found masks to the list
else:
print(f" Annotation 'masks' tensor is None or empty for '{text}'.")
else:
print(f" No masks found or annotation format unexpected for '{text}'. ann type: {type(ann)}")
if isinstance(ann, list) and len(ann) > 0:
print(f" First element of ann for '{text}': {ann[0]}")
found_prompts_details.append(f"{text} ({num_found})") # Record count for status
# Prepare output image
output_image = image_pil.copy()
status_message = f"Results: {', '.join(found_prompts_details)}" if found_prompts_details else "No matches found for any prompt."
# Draw all collected masks if any were found
if all_matching_masks:
print(f"Total masks collected across all prompts: {len(all_matching_masks)}")
# Stack masks if needed (optional, can draw one by one)
# masks_np = np.stack(all_matching_masks, axis=0)
# print(f"Total masks stacked shape: {masks_np.shape}")
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
for i, mask in enumerate(all_matching_masks): # Iterate through collected masks
binary_mask = (mask > 0)
mask_uint8 = binary_mask.astype(np.uint8) * 255
if mask_uint8.max() == 0:
continue # Skip empty masks
# Assign a unique color per mask or per prompt (using random here)
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
try:
mask_image = Image.fromarray(mask_uint8, mode='L')
draw.bitmap((0, 0), mask_image, fill=color)
except Exception as draw_err:
print(f"Error drawing collected mask {i}: {draw_err}")
traceback.print_exc()
continue
# Composite the overlay
try:
output_image_rgba = output_image.convert('RGBA')
output_image_composited = Image.alpha_composite(output_image_rgba, overlay)
output_image = output_image_composited.convert('RGB')
print("Text prompt mask drawing and compositing finished.")
except Exception as comp_err:
print(f"Error during alpha compositing for text prompts: {comp_err}")
traceback.print_exc()
output_image = image_pil # Fallback
status_message += " (Error during visualization)"
else:
print("No matching masks found for any text prompt.")
# status_message is already set
# Save for debugging
if output_image:
try:
debug_path = "debug_fastsam_text_output.png"
output_image.save(debug_path)
print(f"Saved debug output to {debug_path}")
except Exception as save_err:
print(f"Failed to save debug image: {save_err}")
return output_image, status_message
except Exception as e:
print(f"Error during FastSAM text-prompted processing: {e}")
traceback.print_exc()
# Return original image and error message
return image_pil, f"Error during processing: {e}"
# --- Gradio Interface ---
print("Attempting to preload models...")
load_clip_model() # Preload CLIP
load_fastsam_model() # Preload FastSAM
print("Preloading finished (check logs above for errors).")
# --- Gradio Interface Definition ---
# (Your Gradio Blocks code remains largely the same, but ensure the outputs match the function returns)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# CLIP & FastSAM Demo")
gr.Markdown("Explore Zero-Shot Classification, 'Segment Everything', and Text-Prompted Segmentation.")
with gr.Tabs():
# --- CLIP Tab ---
with gr.TabItem("CLIP Zero-Shot Classification"):
# ... (CLIP UI definition - seems ok) ...
clip_button.click(
run_clip_zero_shot,
inputs=[clip_input_image, clip_text_labels],
# Output matches: Label (dict/str), Image (PIL/None)
outputs=[clip_output_label, clip_output_image_display]
)
# ... (CLIP Examples - seems ok) ...
# --- FastSAM Everything Tab ---
with gr.TabItem("FastSAM Segment Everything"):
gr.Markdown("Upload an image to segment all objects/regions.")
with gr.Row():
with gr.Column(scale=1):
fastsam_input_image_all = gr.Image(type="pil", label="Input Image")
with gr.Row():
fastsam_conf_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
fastsam_iou_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
fastsam_button_all = gr.Button("Run FastSAM Segmentation", variant="primary")
with gr.Column(scale=1):
# Output for the image
fastsam_output_image_all = gr.Image(type="pil", label="Segmented Image")
# Add a Textbox for status messages/errors
fastsam_status_all = gr.Textbox(label="Status", interactive=False)
fastsam_button_all.click(
run_fastsam_segmentation,
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
# Outputs: Image (PIL/None), Status (str)
outputs=[fastsam_output_image_all, fastsam_status_all] # Updated outputs
)
# Update examples if needed to match new output structure (add None/str for status)
# Note: Examples might need adjustment if they expect only image output
gr.Examples(
examples=[
["examples/dogs.jpg", 0.4, 0.9],
["examples/fruits.jpg", 0.5, 0.8],
["examples/lion.jpg", 0.45, 0.9],
],
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
# Need to adjust outputs for examples if function signature changed
# This might require a wrapper if examples expect single output
# For now, comment out example outputs or adjust function signature for examples
outputs=[fastsam_output_image_all, fastsam_status_all],
fn=run_fastsam_segmentation,
cache_examples=False, # Keep False for debugging
)
# --- Text-Prompted Segmentation Tab ---
with gr.TabItem("Text-Prompted Segmentation"):
gr.Markdown("Upload an image and provide comma-separated prompts (e.g., 'person, dog').")
with gr.Row():
with gr.Column(scale=1):
prompt_input_image = gr.Image(type="pil", label="Input Image")
prompt_text_input = gr.Textbox(label="Comma-Separated Text Prompts", placeholder="e.g., glasses, watch")
with gr.Row():
prompt_conf = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
prompt_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
prompt_button = gr.Button("Segment by Text", variant="primary")
with gr.Column(scale=1):
# Output Image
prompt_output_image = gr.Image(type="pil", label="Text-Prompted Segmentation")
# Status Textbox (already exists, correctly)
prompt_status_message = gr.Textbox(label="Status", interactive=False)
prompt_button.click(
run_text_prompted_segmentation,
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
# Outputs: Image (PIL/None), Status (str) - Matches function
outputs=[prompt_output_image, prompt_status_message]
)
# Update examples similarly if needed
gr.Examples(
examples=[
["examples/dog_bike.jpg", "person, bicycle", 0.4, 0.9],
["examples/astronaut.jpg", "person, helmet", 0.35, 0.9],
["examples/dogs.jpg", "dog", 0.4, 0.9],
["examples/fruits.jpg", "banana, apple", 0.5, 0.8],
["examples/teacher.jpg", "person, glasses", 0.4, 0.9],
],
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
outputs=[prompt_output_image, prompt_status_message],
fn=run_text_prompted_segmentation,
cache_examples=False, # Keep False for debugging
)
# --- Example File Download ---
# (Download logic seems okay, ensure 'wget' is installed: pip install wget)
if not os.path.exists("examples"):
os.makedirs("examples")
print("Created 'examples' directory.")
example_files = {
"astronaut.jpg": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Astronaut_-_St._Jean_Bay.jpg/640px-Astronaut_-_St._Jean_Bay.jpg",
"dog_bike.jpg": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio/outputs_multimodal.jpg",
"clip_logo.png": "https://raw.githubusercontent.com/openai/CLIP/main/CLIP.png",
"dogs.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image8.jpg",
"fruits.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image9.jpg",
"lion.jpg": "https://huggingface.co/spaces/gradio/image-segmentation/resolve/main/images/lion.jpg",
"teacher.jpg": "https://images.pexels.com/photos/848117/pexels-photo-848117.jpeg?auto=compress&cs=tinysrgb&w=600"
}
def download_example_file(filename, url, retries=3):
filepath = os.path.join("examples", filename)
if not os.path.exists(filepath):
print(f"Attempting to download {filename}...")
for attempt in range(retries):
try:
wget.download(url, filepath)
print(f"Downloaded {filename} successfully.")
return # Exit function on success
except Exception as e:
print(f"Download attempt {attempt + 1}/{retries} for {filename} failed: {e}")
if os.path.exists(filepath): # Clean up partial download
try: os.remove(filepath)
except OSError: pass
if attempt + 1 == retries:
print(f"Failed to download {filename} after {retries} attempts.")
else:
print(f"Example file {filename} already exists.")
# Trigger downloads
for filename, url in example_files.items():
download_example_file(filename, url)
print("Example file check/download complete.")
# --- Launch App ---
if __name__ == "__main__":
print("Launching Gradio Demo...")
demo.launch(debug=True) # Keep debug=True