Spaces:
Sleeping
Sleeping
File size: 30,423 Bytes
dfdcd97 a3ee867 03c5849 b066832 fd55cab b066832 eefe5b4 03c5849 b066832 03c5849 2d0f294 b066832 03c5849 b066832 23fa119 2d0f294 03c5849 b066832 23fa119 2d0f294 03c5849 b066832 eba2946 b066832 03c5849 2d0f294 eba2946 2d0f294 eba2946 2d0f294 eba2946 03c5849 2d0f294 eba2946 03c5849 23fa119 eba2946 03c5849 b066832 eba2946 03c5849 2d0f294 03c5849 2d0f294 03c5849 2d0f294 03c5849 2d0f294 b066832 23fa119 03c5849 23fa119 2d0f294 b066832 2d0f294 b066832 2d0f294 03c5849 b066832 2d0f294 eba2946 03c5849 b066832 03c5849 2d0f294 03c5849 3cd1243 b066832 6facde6 b066832 2d0f294 b066832 23fa119 2d0f294 03c5849 2d0f294 03c5849 6facde6 23fa119 03c5849 2d0f294 03c5849 6facde6 b066832 2d0f294 03c5849 2d0f294 03c5849 2d0f294 b066832 2d0f294 b066832 2d0f294 eba2946 6facde6 b066832 eba2946 2d0f294 6facde6 b066832 2d0f294 23fa119 2d0f294 03c5849 2d0f294 eba2946 2d0f294 23fa119 2d0f294 23fa119 2d0f294 23fa119 2d0f294 23fa119 2d0f294 23fa119 2d0f294 23fa119 2d0f294 03c5849 2d0f294 23fa119 2d0f294 23fa119 2d0f294 23fa119 03c5849 e0d4d2f 23fa119 2d0f294 3d6a9c7 2d0f294 b066832 2d0f294 72f4c5c 2d0f294 b066832 2d0f294 03c5849 b066832 2d0f294 b066832 2d0f294 23fa119 2d0f294 23fa119 2d0f294 23fa119 2d0f294 23fa119 2d0f294 23fa119 2d0f294 23fa119 2d0f294 b066832 2d0f294 6facde6 2d0f294 03c5849 2d0f294 03c5849 2d0f294 03c5849 2d0f294 23fa119 2d0f294 eefe5b4 23fa119 eba2946 2d0f294 6facde6 e0d4d2f b066832 2d0f294 b066832 23fa119 b066832 2d0f294 b066832 2d0f294 b066832 2d0f294 b066832 2d0f294 6facde6 2d0f294 23fa119 03c5849 2d0f294 03c5849 2d0f294 03c5849 2d0f294 03c5849 2d0f294 03c5849 2d0f294 23fa119 03c5849 b066832 23fa119 03c5849 23fa119 b066832 2d0f294 23fa119 2d0f294 03c5849 2d0f294 23fa119 2d0f294 03c5849 b066832 2d0f294 b066832 2d0f294 b066832 03c5849 2d0f294 03c5849 2d0f294 03c5849 2d0f294 03c5849 2d0f294 03c5849 2d0f294 03c5849 2d0f294 b066832 2d0f294 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
import gradio as gr
import torch
from transformers import AutoProcessor, AutoModel
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import random
import os
import wget
import traceback
# --- Configuration & Model Loading ---
# Device Selection with fallback
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Simplified check
print(f"Using device: {DEVICE}")
# --- CLIP Setup ---
CLIP_MODEL_ID = "openai/clip-vit-base-patch32"
clip_processor = None
clip_model = None
def load_clip_model():
global clip_processor, clip_model
if clip_processor is None:
try:
print(f"Loading CLIP processor: {CLIP_MODEL_ID}...")
clip_processor = AutoProcessor.from_pretrained(CLIP_MODEL_ID)
print("CLIP processor loaded.")
except Exception as e:
print(f"Error loading CLIP processor: {e}")
traceback.print_exc() # Print traceback
return False
if clip_model is None:
try:
print(f"Loading CLIP model: {CLIP_MODEL_ID}...")
clip_model = AutoModel.from_pretrained(CLIP_MODEL_ID).to(DEVICE)
print(f"CLIP model loaded to {DEVICE}.")
except Exception as e:
print(f"Error loading CLIP model: {e}")
traceback.print_exc() # Print traceback
return False
return True
# --- FastSAM Setup ---
FASTSAM_CHECKPOINT = "FastSAM-s.pt"
FASTSAM_CHECKPOINT_URL = f"https://huggingface.co/CASIA-IVA-Lab/FastSAM-s/resolve/main/{FASTSAM_CHECKPOINT}"
fastsam_model = None
fastsam_lib_imported = False
FastSAM = None # Define placeholders
FastSAMPrompt = None # Define placeholders
def check_and_import_fastsam():
global fastsam_lib_imported, FastSAM, FastSAMPrompt # Make sure globals are modified
if not fastsam_lib_imported:
try:
from fastsam import FastSAM as FastSAM_lib, FastSAMPrompt as FastSAMPrompt_lib # Use temp names
FastSAM = FastSAM_lib # Assign to global
FastSAMPrompt = FastSAMPrompt_lib # Assign to global
fastsam_lib_imported = True
print("fastsam library imported successfully.")
except ImportError as e:
print(f"Error: 'fastsam' library not found. Please install it: pip install git+https://github.com/CASIA-IVA-Lab/FastSAM.git")
print(f"ImportError: {e}")
fastsam_lib_imported = False
except Exception as e:
print(f"Unexpected error during fastsam import: {e}")
traceback.print_exc()
fastsam_lib_imported = False
return fastsam_lib_imported
def download_fastsam_weights(retries=3):
if not os.path.exists(FASTSAM_CHECKPOINT):
print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...")
for attempt in range(retries):
try:
# Ensure the directory exists if FASTSAM_CHECKPOINT includes a path
os.makedirs(os.path.dirname(FASTSAM_CHECKPOINT) or '.', exist_ok=True)
wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT)
print("FastSAM weights downloaded.")
return True # Return True on successful download
except Exception as e:
print(f"Attempt {attempt + 1}/{retries} failed to download FastSAM weights: {e}")
if os.path.exists(FASTSAM_CHECKPOINT): # Cleanup partial download
try:
os.remove(FASTSAM_CHECKPOINT)
except OSError:
pass
if attempt + 1 == retries:
print("Failed to download weights after all attempts.")
return False
return False # Should not be reached if loop completes, but added for clarity
else:
print("FastSAM weights already exist.")
return True # Weights exist
def load_fastsam_model():
global fastsam_model
if fastsam_model is None:
if not check_and_import_fastsam():
print("Cannot load FastSAM model due to library import failure.")
return False
if download_fastsam_weights():
# Ensure FastSAM class is available (might fail if import failed earlier but file exists)
if FastSAM is None:
print("FastSAM class not available, check import status.")
return False
try:
print(f"Loading FastSAM model: {FASTSAM_CHECKPOINT}...")
# Instantiate the imported class
fastsam_model = FastSAM(FASTSAM_CHECKPOINT)
# Move model to device *after* initialization (common practice)
# Note: Check FastSAM docs if it needs explicit .to(DEVICE) or handles it internally
# fastsam_model.model.to(DEVICE) # Example if needed, adjust based on FastSAM structure
print("FastSAM model loaded.")
return True
except Exception as e:
print(f"Error loading FastSAM model weights or initializing: {e}")
traceback.print_exc()
return False
else:
print("FastSAM weights not found or download failed.")
return False
# Model already loaded
return True
# --- Processing Functions ---
def run_clip_zero_shot(image: Image.Image, text_labels: str):
# Keep CLIP as is, seems less likely to be the primary issue
if not isinstance(image, Image.Image):
print(f"CLIP input is not a PIL Image, type: {type(image)}")
# Try to convert if it's a numpy array (common from Gradio)
if isinstance(image, np.ndarray):
try:
image = Image.fromarray(image)
print("Converted numpy input to PIL Image for CLIP.")
except Exception as e:
print(f"Failed to convert numpy array to PIL Image: {e}")
return "Error: Invalid image input format.", None
else:
return "Error: Please provide a valid image.", None
if clip_model is None or clip_processor is None:
if not load_clip_model():
# Return None for the image part on critical error
return "Error: CLIP Model could not be loaded.", None
if not text_labels:
# Return empty dict and original image if no labels
return {}, image
labels = [label.strip() for label in text_labels.split(',') if label.strip()]
if not labels:
# Return empty dict and original image if no valid labels
return {}, image
print(f"Running CLIP zero-shot classification with labels: {labels}")
try:
# Ensure image is RGB
if image.mode != "RGB":
print(f"Converting image from {image.mode} to RGB for CLIP.")
image = image.convert("RGB")
inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE)
with torch.no_grad():
outputs = clip_model(**inputs)
# Calculate probabilities
logits_per_image = outputs.logits_per_image # B x N_labels
probs = logits_per_image.softmax(dim=1) # Softmax over labels
# Create confidences dictionary
confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))}
print(f"CLIP Confidences: {confidences}")
# Return confidences and the original (potentially converted) image
return confidences, image
except Exception as e:
print(f"Error during CLIP processing: {e}")
traceback.print_exc()
# Return error message and None for image
return f"Error during CLIP processing: {e}", None
def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
# Add input type check
if not isinstance(image_pil, Image.Image):
print(f"FastSAM input is not a PIL Image, type: {type(image_pil)}")
if isinstance(image_pil, np.ndarray):
try:
image_pil = Image.fromarray(image_pil)
print("Converted numpy input to PIL Image for FastSAM.")
except Exception as e:
print(f"Failed to convert numpy array to PIL Image: {e}")
# Return None for image on error
return None, "Error: Invalid image input format." # Return tuple for consistency
else:
# Return None for image on error
return None, "Error: Please provide a valid image." # Return tuple
# Ensure model is loaded
if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None:
# Return None for image on critical error
return None, "Error: FastSAM not loaded or library unavailable."
print(f"Running FastSAM 'segment everything' with conf={conf_threshold}, iou={iou_threshold}...")
output_image = None # Initialize output image
status_message = "Processing..." # Initial status
try:
# Ensure image is RGB
if image_pil.mode != "RGB":
print(f"Converting image from {image_pil.mode} to RGB for FastSAM.")
image_pil_rgb = image_pil.convert("RGB")
else:
image_pil_rgb = image_pil
# Convert PIL Image to NumPy array (RGB)
image_np_rgb = np.array(image_pil_rgb)
print(f"Input image shape for FastSAM: {image_np_rgb.shape}")
# Run FastSAM model
# Make sure the arguments match what FastSAM expects
everything_results = fastsam_model(
image_np_rgb,
device=DEVICE,
retina_masks=True,
imgsz=640, # Or another size FastSAM supports
conf=conf_threshold,
iou=iou_threshold,
verbose=True # Keep verbose for debugging
)
# Check if results are valid before creating prompt
if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0:
print("FastSAM model returned None or empty results.")
# Return original image and status
return image_pil, "FastSAM did not return valid results."
# Results might be in a different format, inspect 'everything_results'
print(f"Type of everything_results: {type(everything_results)}")
print(f"Length of everything_results: {len(everything_results)}")
if len(everything_results) > 0:
print(f"Type of first element: {type(everything_results[0])}")
# Try to access potential attributes like 'masks' if it's an object
if hasattr(everything_results[0], 'masks') and everything_results[0].masks is not None:
print(f"Masks found in results object, shape: {everything_results[0].masks.data.shape}")
else:
print("First result element does not have 'masks' attribute or it's None.")
# Process results with FastSAMPrompt
# Ensure FastSAMPrompt class is available
if FastSAMPrompt is None:
print("FastSAMPrompt class is not available.")
return image_pil, "Error: FastSAMPrompt class not loaded."
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
ann = prompt_process.everything_prompt() # Get all annotations
# Check annotation format - Adjust based on actual FastSAM output structure
# Assuming 'ann' is a list and the first element is a dictionary containing masks
masks = None
if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]:
mask_tensor = ann[0]['masks']
if mask_tensor is not None and mask_tensor.numel() > 0: # Check if tensor is not None and not empty
masks = mask_tensor.cpu().numpy()
print(f"Found {len(masks)} masks with shape: {masks.shape}")
else:
print("Annotation 'masks' tensor is None or empty.")
else:
print(f"No masks found or annotation format unexpected. ann type: {type(ann)}")
if isinstance(ann, list) and len(ann) > 0:
print(f"First element of ann: {ann[0]}")
# Prepare output image (start with original)
output_image = image_pil.copy()
# Draw masks if found
if masks is not None and len(masks) > 0:
# Ensure output_image is RGBA for compositing
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
for i, mask in enumerate(masks):
# Ensure mask is boolean/binary before converting
binary_mask = (mask > 0) # Use threshold 0 for binary mask from FastSAM output
mask_uint8 = binary_mask.astype(np.uint8) * 255
if mask_uint8.max() == 0: # Skip empty masks
# print(f"Skipping empty mask {i}")
continue
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180) # RGBA color
try:
mask_image = Image.fromarray(mask_uint8, mode='L') # Grayscale mask
# Draw the mask onto the overlay
draw.bitmap((0, 0), mask_image, fill=color)
except Exception as draw_err:
print(f"Error drawing mask {i}: {draw_err}")
traceback.print_exc()
continue # Skip this mask
# Composite the overlay onto the image
try:
output_image_rgba = output_image.convert('RGBA')
output_image_composited = Image.alpha_composite(output_image_rgba, overlay)
output_image = output_image_composited.convert('RGB') # Convert back to RGB for Gradio
status_message = f"Segmentation complete. Found {len(masks)} masks."
print("Mask drawing and compositing finished.")
except Exception as comp_err:
print(f"Error during alpha compositing: {comp_err}")
traceback.print_exc()
output_image = image_pil # Fallback to original image
status_message = "Error during mask visualization."
else:
print("No masks detected or processed for 'segment everything' mode.")
status_message = "No segments found or processed."
output_image = image_pil # Return original image if no masks
# Save for debugging before returning
if output_image:
try:
debug_path = "debug_fastsam_everything_output.png"
output_image.save(debug_path)
print(f"Saved debug output to {debug_path}")
except Exception as save_err:
print(f"Failed to save debug image: {save_err}")
return output_image, status_message # Return image and status message
except Exception as e:
print(f"Error during FastSAM 'everything' processing: {e}")
traceback.print_exc()
# Return original image and error message in case of failure
return image_pil, f"Error during processing: {e}"
def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
# Add input type check
if not isinstance(image_pil, Image.Image):
print(f"FastSAM Text input is not a PIL Image, type: {type(image_pil)}")
if isinstance(image_pil, np.ndarray):
try:
image_pil = Image.fromarray(image_pil)
print("Converted numpy input to PIL Image for FastSAM Text.")
except Exception as e:
print(f"Failed to convert numpy array to PIL Image: {e}")
return None, "Error: Invalid image input format."
else:
return None, "Error: Please provide a valid image."
# Ensure model is loaded
if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None:
return image_pil, "Error: FastSAM Model not loaded or library unavailable." # Return original image on load fail
if not text_prompts:
return image_pil, "Please enter text prompts (e.g., 'person, dog')."
prompts = [p.strip() for p in text_prompts.split(',') if p.strip()]
if not prompts:
return image_pil, "No valid text prompts entered."
print(f"Running FastSAM text-prompted segmentation for: {prompts} with conf={conf_threshold}, iou={iou_threshold}")
output_image = None
status_message = "Processing..."
try:
# Ensure image is RGB
if image_pil.mode != "RGB":
print(f"Converting image from {image_pil.mode} to RGB for FastSAM.")
image_pil_rgb = image_pil.convert("RGB")
else:
image_pil_rgb = image_pil
image_np_rgb = np.array(image_pil_rgb)
print(f"Input image shape for FastSAM Text: {image_np_rgb.shape}")
# Run FastSAM once to get all potential segments
everything_results = fastsam_model(
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640, # Use consistent args
conf=conf_threshold, iou=iou_threshold, verbose=True
)
# Check results
if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0:
print("FastSAM model returned None or empty results for text prompt base.")
return image_pil, "FastSAM did not return base results."
# Initialize FastSAMPrompt
if FastSAMPrompt is None:
print("FastSAMPrompt class is not available.")
return image_pil, "Error: FastSAMPrompt class not loaded."
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
all_matching_masks = []
found_prompts_details = [] # Store details like 'prompt (count)'
# Process each text prompt
for text in prompts:
print(f" Processing prompt: '{text}'")
# Get annotation for the specific text prompt
ann = prompt_process.text_prompt(text=text)
# Check annotation format and extract masks
current_masks = None
num_found = 0
# Adjust check based on actual structure of 'ann' for text_prompt
if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]:
mask_tensor = ann[0]['masks']
if mask_tensor is not None and mask_tensor.numel() > 0:
current_masks = mask_tensor.cpu().numpy()
num_found = len(current_masks)
print(f" Found {num_found} mask(s) for '{text}'. Shape: {current_masks.shape}")
all_matching_masks.extend(current_masks) # Add found masks to the list
else:
print(f" Annotation 'masks' tensor is None or empty for '{text}'.")
else:
print(f" No masks found or annotation format unexpected for '{text}'. ann type: {type(ann)}")
if isinstance(ann, list) and len(ann) > 0:
print(f" First element of ann for '{text}': {ann[0]}")
found_prompts_details.append(f"{text} ({num_found})") # Record count for status
# Prepare output image
output_image = image_pil.copy()
status_message = f"Results: {', '.join(found_prompts_details)}" if found_prompts_details else "No matches found for any prompt."
# Draw all collected masks if any were found
if all_matching_masks:
print(f"Total masks collected across all prompts: {len(all_matching_masks)}")
# Stack masks if needed (optional, can draw one by one)
# masks_np = np.stack(all_matching_masks, axis=0)
# print(f"Total masks stacked shape: {masks_np.shape}")
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
for i, mask in enumerate(all_matching_masks): # Iterate through collected masks
binary_mask = (mask > 0)
mask_uint8 = binary_mask.astype(np.uint8) * 255
if mask_uint8.max() == 0:
continue # Skip empty masks
# Assign a unique color per mask or per prompt (using random here)
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
try:
mask_image = Image.fromarray(mask_uint8, mode='L')
draw.bitmap((0, 0), mask_image, fill=color)
except Exception as draw_err:
print(f"Error drawing collected mask {i}: {draw_err}")
traceback.print_exc()
continue
# Composite the overlay
try:
output_image_rgba = output_image.convert('RGBA')
output_image_composited = Image.alpha_composite(output_image_rgba, overlay)
output_image = output_image_composited.convert('RGB')
print("Text prompt mask drawing and compositing finished.")
except Exception as comp_err:
print(f"Error during alpha compositing for text prompts: {comp_err}")
traceback.print_exc()
output_image = image_pil # Fallback
status_message += " (Error during visualization)"
else:
print("No matching masks found for any text prompt.")
# status_message is already set
# Save for debugging
if output_image:
try:
debug_path = "debug_fastsam_text_output.png"
output_image.save(debug_path)
print(f"Saved debug output to {debug_path}")
except Exception as save_err:
print(f"Failed to save debug image: {save_err}")
return output_image, status_message
except Exception as e:
print(f"Error during FastSAM text-prompted processing: {e}")
traceback.print_exc()
# Return original image and error message
return image_pil, f"Error during processing: {e}"
# --- Gradio Interface ---
print("Attempting to preload models...")
load_clip_model() # Preload CLIP
load_fastsam_model() # Preload FastSAM
print("Preloading finished (check logs above for errors).")
# --- Gradio Interface Definition ---
# (Your Gradio Blocks code remains largely the same, but ensure the outputs match the function returns)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# CLIP & FastSAM Demo")
gr.Markdown("Explore Zero-Shot Classification, 'Segment Everything', and Text-Prompted Segmentation.")
with gr.Tabs():
# --- CLIP Tab ---
with gr.TabItem("CLIP Zero-Shot Classification"):
# ... (CLIP UI definition - seems ok) ...
clip_button.click(
run_clip_zero_shot,
inputs=[clip_input_image, clip_text_labels],
# Output matches: Label (dict/str), Image (PIL/None)
outputs=[clip_output_label, clip_output_image_display]
)
# ... (CLIP Examples - seems ok) ...
# --- FastSAM Everything Tab ---
with gr.TabItem("FastSAM Segment Everything"):
gr.Markdown("Upload an image to segment all objects/regions.")
with gr.Row():
with gr.Column(scale=1):
fastsam_input_image_all = gr.Image(type="pil", label="Input Image")
with gr.Row():
fastsam_conf_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
fastsam_iou_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
fastsam_button_all = gr.Button("Run FastSAM Segmentation", variant="primary")
with gr.Column(scale=1):
# Output for the image
fastsam_output_image_all = gr.Image(type="pil", label="Segmented Image")
# Add a Textbox for status messages/errors
fastsam_status_all = gr.Textbox(label="Status", interactive=False)
fastsam_button_all.click(
run_fastsam_segmentation,
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
# Outputs: Image (PIL/None), Status (str)
outputs=[fastsam_output_image_all, fastsam_status_all] # Updated outputs
)
# Update examples if needed to match new output structure (add None/str for status)
# Note: Examples might need adjustment if they expect only image output
gr.Examples(
examples=[
["examples/dogs.jpg", 0.4, 0.9],
["examples/fruits.jpg", 0.5, 0.8],
["examples/lion.jpg", 0.45, 0.9],
],
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
# Need to adjust outputs for examples if function signature changed
# This might require a wrapper if examples expect single output
# For now, comment out example outputs or adjust function signature for examples
outputs=[fastsam_output_image_all, fastsam_status_all],
fn=run_fastsam_segmentation,
cache_examples=False, # Keep False for debugging
)
# --- Text-Prompted Segmentation Tab ---
with gr.TabItem("Text-Prompted Segmentation"):
gr.Markdown("Upload an image and provide comma-separated prompts (e.g., 'person, dog').")
with gr.Row():
with gr.Column(scale=1):
prompt_input_image = gr.Image(type="pil", label="Input Image")
prompt_text_input = gr.Textbox(label="Comma-Separated Text Prompts", placeholder="e.g., glasses, watch")
with gr.Row():
prompt_conf = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
prompt_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
prompt_button = gr.Button("Segment by Text", variant="primary")
with gr.Column(scale=1):
# Output Image
prompt_output_image = gr.Image(type="pil", label="Text-Prompted Segmentation")
# Status Textbox (already exists, correctly)
prompt_status_message = gr.Textbox(label="Status", interactive=False)
prompt_button.click(
run_text_prompted_segmentation,
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
# Outputs: Image (PIL/None), Status (str) - Matches function
outputs=[prompt_output_image, prompt_status_message]
)
# Update examples similarly if needed
gr.Examples(
examples=[
["examples/dog_bike.jpg", "person, bicycle", 0.4, 0.9],
["examples/astronaut.jpg", "person, helmet", 0.35, 0.9],
["examples/dogs.jpg", "dog", 0.4, 0.9],
["examples/fruits.jpg", "banana, apple", 0.5, 0.8],
["examples/teacher.jpg", "person, glasses", 0.4, 0.9],
],
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
outputs=[prompt_output_image, prompt_status_message],
fn=run_text_prompted_segmentation,
cache_examples=False, # Keep False for debugging
)
# --- Example File Download ---
# (Download logic seems okay, ensure 'wget' is installed: pip install wget)
if not os.path.exists("examples"):
os.makedirs("examples")
print("Created 'examples' directory.")
example_files = {
"astronaut.jpg": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Astronaut_-_St._Jean_Bay.jpg/640px-Astronaut_-_St._Jean_Bay.jpg",
"dog_bike.jpg": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio/outputs_multimodal.jpg",
"clip_logo.png": "https://raw.githubusercontent.com/openai/CLIP/main/CLIP.png",
"dogs.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image8.jpg",
"fruits.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image9.jpg",
"lion.jpg": "https://huggingface.co/spaces/gradio/image-segmentation/resolve/main/images/lion.jpg",
"teacher.jpg": "https://images.pexels.com/photos/848117/pexels-photo-848117.jpeg?auto=compress&cs=tinysrgb&w=600"
}
def download_example_file(filename, url, retries=3):
filepath = os.path.join("examples", filename)
if not os.path.exists(filepath):
print(f"Attempting to download {filename}...")
for attempt in range(retries):
try:
wget.download(url, filepath)
print(f"Downloaded {filename} successfully.")
return # Exit function on success
except Exception as e:
print(f"Download attempt {attempt + 1}/{retries} for {filename} failed: {e}")
if os.path.exists(filepath): # Clean up partial download
try: os.remove(filepath)
except OSError: pass
if attempt + 1 == retries:
print(f"Failed to download {filename} after {retries} attempts.")
else:
print(f"Example file {filename} already exists.")
# Trigger downloads
for filename, url in example_files.items():
download_example_file(filename, url)
print("Example file check/download complete.")
# --- Launch App ---
if __name__ == "__main__":
print("Launching Gradio Demo...")
demo.launch(debug=True) # Keep debug=True |