File size: 30,423 Bytes
dfdcd97
a3ee867
03c5849
b066832
fd55cab
b066832
eefe5b4
03c5849
 
b066832
 
 
03c5849
2d0f294
b066832
 
03c5849
b066832
 
 
 
 
 
 
23fa119
 
 
 
 
 
2d0f294
03c5849
b066832
23fa119
 
 
 
 
 
2d0f294
03c5849
 
b066832
 
 
eba2946
b066832
 
03c5849
2d0f294
 
eba2946
 
2d0f294
eba2946
 
2d0f294
 
 
eba2946
 
03c5849
2d0f294
 
eba2946
 
03c5849
23fa119
eba2946
 
 
03c5849
b066832
eba2946
03c5849
 
2d0f294
 
03c5849
 
2d0f294
03c5849
2d0f294
 
 
 
 
 
03c5849
 
 
2d0f294
 
 
 
b066832
 
 
 
23fa119
03c5849
 
23fa119
2d0f294
 
 
 
b066832
 
2d0f294
b066832
2d0f294
 
 
03c5849
 
b066832
2d0f294
eba2946
03c5849
b066832
03c5849
 
2d0f294
03c5849
3cd1243
b066832
6facde6
b066832
2d0f294
 
 
 
 
 
 
 
 
 
 
 
 
 
b066832
23fa119
2d0f294
03c5849
 
2d0f294
03c5849
6facde6
23fa119
03c5849
2d0f294
03c5849
6facde6
b066832
 
2d0f294
03c5849
2d0f294
03c5849
2d0f294
b066832
 
 
2d0f294
 
 
 
 
b066832
2d0f294
 
eba2946
6facde6
b066832
eba2946
2d0f294
 
 
6facde6
b066832
2d0f294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fa119
 
2d0f294
03c5849
2d0f294
 
 
 
 
 
 
 
eba2946
2d0f294
 
23fa119
2d0f294
 
 
 
 
 
 
23fa119
2d0f294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fa119
2d0f294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fa119
2d0f294
 
23fa119
2d0f294
 
 
 
23fa119
 
2d0f294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03c5849
2d0f294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fa119
 
 
2d0f294
 
 
23fa119
 
2d0f294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fa119
03c5849
e0d4d2f
23fa119
 
 
 
2d0f294
 
 
 
3d6a9c7
2d0f294
b066832
2d0f294
 
 
 
 
 
 
72f4c5c
2d0f294
b066832
2d0f294
03c5849
b066832
2d0f294
 
 
 
 
 
 
 
 
 
b066832
2d0f294
23fa119
2d0f294
23fa119
2d0f294
23fa119
 
2d0f294
23fa119
2d0f294
 
 
 
 
 
 
 
 
 
 
 
 
 
23fa119
2d0f294
 
 
23fa119
2d0f294
 
 
b066832
2d0f294
6facde6
2d0f294
03c5849
2d0f294
 
 
 
 
03c5849
 
2d0f294
 
 
 
 
 
 
 
03c5849
2d0f294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fa119
 
2d0f294
eefe5b4
23fa119
eba2946
2d0f294
 
6facde6
 
e0d4d2f
b066832
2d0f294
 
 
 
 
 
 
b066832
 
 
23fa119
b066832
 
2d0f294
b066832
2d0f294
b066832
 
 
2d0f294
b066832
 
2d0f294
 
6facde6
2d0f294
23fa119
03c5849
 
 
 
 
 
 
 
 
2d0f294
03c5849
2d0f294
 
 
03c5849
 
 
2d0f294
 
03c5849
2d0f294
 
03c5849
2d0f294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fa119
03c5849
b066832
 
23fa119
03c5849
 
23fa119
 
 
b066832
2d0f294
23fa119
2d0f294
03c5849
2d0f294
23fa119
 
 
2d0f294
03c5849
b066832
2d0f294
b066832
2d0f294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b066832
 
03c5849
 
 
 
 
 
 
 
 
 
 
 
 
2d0f294
03c5849
 
 
2d0f294
 
03c5849
2d0f294
 
 
 
03c5849
 
2d0f294
 
 
 
03c5849
 
2d0f294
 
03c5849
2d0f294
b066832
2d0f294
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import gradio as gr
import torch
from transformers import AutoProcessor, AutoModel
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import random
import os
import wget
import traceback

# --- Configuration & Model Loading ---

# Device Selection with fallback
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Simplified check
print(f"Using device: {DEVICE}")

# --- CLIP Setup ---
CLIP_MODEL_ID = "openai/clip-vit-base-patch32"
clip_processor = None
clip_model = None

def load_clip_model():
    global clip_processor, clip_model
    if clip_processor is None:
        try:
            print(f"Loading CLIP processor: {CLIP_MODEL_ID}...")
            clip_processor = AutoProcessor.from_pretrained(CLIP_MODEL_ID)
            print("CLIP processor loaded.")
        except Exception as e:
            print(f"Error loading CLIP processor: {e}")
            traceback.print_exc() # Print traceback
            return False
    if clip_model is None:
        try:
            print(f"Loading CLIP model: {CLIP_MODEL_ID}...")
            clip_model = AutoModel.from_pretrained(CLIP_MODEL_ID).to(DEVICE)
            print(f"CLIP model loaded to {DEVICE}.")
        except Exception as e:
            print(f"Error loading CLIP model: {e}")
            traceback.print_exc() # Print traceback
            return False
    return True

# --- FastSAM Setup ---
FASTSAM_CHECKPOINT = "FastSAM-s.pt"
FASTSAM_CHECKPOINT_URL = f"https://huggingface.co/CASIA-IVA-Lab/FastSAM-s/resolve/main/{FASTSAM_CHECKPOINT}"

fastsam_model = None
fastsam_lib_imported = False
FastSAM = None # Define placeholders
FastSAMPrompt = None # Define placeholders

def check_and_import_fastsam():
    global fastsam_lib_imported, FastSAM, FastSAMPrompt # Make sure globals are modified
    if not fastsam_lib_imported:
        try:
            from fastsam import FastSAM as FastSAM_lib, FastSAMPrompt as FastSAMPrompt_lib # Use temp names
            FastSAM = FastSAM_lib # Assign to global
            FastSAMPrompt = FastSAMPrompt_lib # Assign to global
            fastsam_lib_imported = True
            print("fastsam library imported successfully.")
        except ImportError as e:
            print(f"Error: 'fastsam' library not found. Please install it: pip install git+https://github.com/CASIA-IVA-Lab/FastSAM.git")
            print(f"ImportError: {e}")
            fastsam_lib_imported = False
        except Exception as e:
            print(f"Unexpected error during fastsam import: {e}")
            traceback.print_exc()
            fastsam_lib_imported = False
    return fastsam_lib_imported

def download_fastsam_weights(retries=3):
    if not os.path.exists(FASTSAM_CHECKPOINT):
        print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...")
        for attempt in range(retries):
            try:
                # Ensure the directory exists if FASTSAM_CHECKPOINT includes a path
                os.makedirs(os.path.dirname(FASTSAM_CHECKPOINT) or '.', exist_ok=True)
                wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT)
                print("FastSAM weights downloaded.")
                return True # Return True on successful download
            except Exception as e:
                print(f"Attempt {attempt + 1}/{retries} failed to download FastSAM weights: {e}")
                if os.path.exists(FASTSAM_CHECKPOINT): # Cleanup partial download
                    try:
                        os.remove(FASTSAM_CHECKPOINT)
                    except OSError:
                        pass
                if attempt + 1 == retries:
                    print("Failed to download weights after all attempts.")
                    return False
        return False # Should not be reached if loop completes, but added for clarity
    else:
        print("FastSAM weights already exist.")
        return True # Weights exist

def load_fastsam_model():
    global fastsam_model
    if fastsam_model is None:
        if not check_and_import_fastsam():
            print("Cannot load FastSAM model due to library import failure.")
            return False
        if download_fastsam_weights():
            # Ensure FastSAM class is available (might fail if import failed earlier but file exists)
            if FastSAM is None:
                 print("FastSAM class not available, check import status.")
                 return False
            try:
                print(f"Loading FastSAM model: {FASTSAM_CHECKPOINT}...")
                # Instantiate the imported class
                fastsam_model = FastSAM(FASTSAM_CHECKPOINT)
                # Move model to device *after* initialization (common practice)
                # Note: Check FastSAM docs if it needs explicit .to(DEVICE) or handles it internally
                # fastsam_model.model.to(DEVICE) # Example if needed, adjust based on FastSAM structure
                print("FastSAM model loaded.")
                return True
            except Exception as e:
                print(f"Error loading FastSAM model weights or initializing: {e}")
                traceback.print_exc()
                return False
        else:
            print("FastSAM weights not found or download failed.")
            return False
    # Model already loaded
    return True

# --- Processing Functions ---

def run_clip_zero_shot(image: Image.Image, text_labels: str):
    # Keep CLIP as is, seems less likely to be the primary issue
    if not isinstance(image, Image.Image):
         print(f"CLIP input is not a PIL Image, type: {type(image)}")
         # Try to convert if it's a numpy array (common from Gradio)
         if isinstance(image, np.ndarray):
             try:
                 image = Image.fromarray(image)
                 print("Converted numpy input to PIL Image for CLIP.")
             except Exception as e:
                 print(f"Failed to convert numpy array to PIL Image: {e}")
                 return "Error: Invalid image input format.", None
         else:
             return "Error: Please provide a valid image.", None

    if clip_model is None or clip_processor is None:
        if not load_clip_model():
            # Return None for the image part on critical error
            return "Error: CLIP Model could not be loaded.", None
    if not text_labels:
        # Return empty dict and original image if no labels
        return {}, image

    labels = [label.strip() for label in text_labels.split(',') if label.strip()]
    if not labels:
        # Return empty dict and original image if no valid labels
        return {}, image

    print(f"Running CLIP zero-shot classification with labels: {labels}")
    try:
        # Ensure image is RGB
        if image.mode != "RGB":
            print(f"Converting image from {image.mode} to RGB for CLIP.")
            image = image.convert("RGB")

        inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE)
        with torch.no_grad():
            outputs = clip_model(**inputs)
            # Calculate probabilities
            logits_per_image = outputs.logits_per_image # B x N_labels
            probs = logits_per_image.softmax(dim=1) # Softmax over labels

        # Create confidences dictionary
        confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))}
        print(f"CLIP Confidences: {confidences}")
        # Return confidences and the original (potentially converted) image
        return confidences, image
    except Exception as e:
        print(f"Error during CLIP processing: {e}")
        traceback.print_exc()
        # Return error message and None for image
        return f"Error during CLIP processing: {e}", None


def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
    # Add input type check
    if not isinstance(image_pil, Image.Image):
         print(f"FastSAM input is not a PIL Image, type: {type(image_pil)}")
         if isinstance(image_pil, np.ndarray):
             try:
                 image_pil = Image.fromarray(image_pil)
                 print("Converted numpy input to PIL Image for FastSAM.")
             except Exception as e:
                 print(f"Failed to convert numpy array to PIL Image: {e}")
                 # Return None for image on error
                 return None, "Error: Invalid image input format." # Return tuple for consistency
         else:
             # Return None for image on error
             return None, "Error: Please provide a valid image." # Return tuple

    # Ensure model is loaded
    if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None:
        # Return None for image on critical error
        return None, "Error: FastSAM not loaded or library unavailable."

    print(f"Running FastSAM 'segment everything' with conf={conf_threshold}, iou={iou_threshold}...")
    output_image = None # Initialize output image
    status_message = "Processing..." # Initial status

    try:
        # Ensure image is RGB
        if image_pil.mode != "RGB":
            print(f"Converting image from {image_pil.mode} to RGB for FastSAM.")
            image_pil_rgb = image_pil.convert("RGB")
        else:
            image_pil_rgb = image_pil

        # Convert PIL Image to NumPy array (RGB)
        image_np_rgb = np.array(image_pil_rgb)
        print(f"Input image shape for FastSAM: {image_np_rgb.shape}")

        # Run FastSAM model
        # Make sure the arguments match what FastSAM expects
        everything_results = fastsam_model(
            image_np_rgb,
            device=DEVICE,
            retina_masks=True,
            imgsz=640, # Or another size FastSAM supports
            conf=conf_threshold,
            iou=iou_threshold,
            verbose=True # Keep verbose for debugging
        )

        # Check if results are valid before creating prompt
        if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0:
            print("FastSAM model returned None or empty results.")
            # Return original image and status
            return image_pil, "FastSAM did not return valid results."

        # Results might be in a different format, inspect 'everything_results'
        print(f"Type of everything_results: {type(everything_results)}")
        print(f"Length of everything_results: {len(everything_results)}")
        if len(everything_results) > 0:
            print(f"Type of first element: {type(everything_results[0])}")
             # Try to access potential attributes like 'masks' if it's an object
            if hasattr(everything_results[0], 'masks') and everything_results[0].masks is not None:
                 print(f"Masks found in results object, shape: {everything_results[0].masks.data.shape}")
            else:
                 print("First result element does not have 'masks' attribute or it's None.")


        # Process results with FastSAMPrompt
        # Ensure FastSAMPrompt class is available
        if FastSAMPrompt is None:
            print("FastSAMPrompt class is not available.")
            return image_pil, "Error: FastSAMPrompt class not loaded."

        prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
        ann = prompt_process.everything_prompt() # Get all annotations

        # Check annotation format - Adjust based on actual FastSAM output structure
        # Assuming 'ann' is a list and the first element is a dictionary containing masks
        masks = None
        if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]:
            mask_tensor = ann[0]['masks']
            if mask_tensor is not None and mask_tensor.numel() > 0: # Check if tensor is not None and not empty
                 masks = mask_tensor.cpu().numpy()
                 print(f"Found {len(masks)} masks with shape: {masks.shape}")
            else:
                 print("Annotation 'masks' tensor is None or empty.")
        else:
            print(f"No masks found or annotation format unexpected. ann type: {type(ann)}")
            if isinstance(ann, list) and len(ann) > 0:
                print(f"First element of ann: {ann[0]}")


        # Prepare output image (start with original)
        output_image = image_pil.copy()

        # Draw masks if found
        if masks is not None and len(masks) > 0:
            # Ensure output_image is RGBA for compositing
            overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
            draw = ImageDraw.Draw(overlay)

            for i, mask in enumerate(masks):
                # Ensure mask is boolean/binary before converting
                binary_mask = (mask > 0) # Use threshold 0 for binary mask from FastSAM output
                mask_uint8 = binary_mask.astype(np.uint8) * 255
                if mask_uint8.max() == 0: # Skip empty masks
                    # print(f"Skipping empty mask {i}")
                    continue

                color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180) # RGBA color
                try:
                    mask_image = Image.fromarray(mask_uint8, mode='L') # Grayscale mask
                    # Draw the mask onto the overlay
                    draw.bitmap((0, 0), mask_image, fill=color)
                except Exception as draw_err:
                    print(f"Error drawing mask {i}: {draw_err}")
                    traceback.print_exc()
                    continue # Skip this mask

            # Composite the overlay onto the image
            try:
                 output_image_rgba = output_image.convert('RGBA')
                 output_image_composited = Image.alpha_composite(output_image_rgba, overlay)
                 output_image = output_image_composited.convert('RGB') # Convert back to RGB for Gradio
                 status_message = f"Segmentation complete. Found {len(masks)} masks."
                 print("Mask drawing and compositing finished.")
            except Exception as comp_err:
                 print(f"Error during alpha compositing: {comp_err}")
                 traceback.print_exc()
                 output_image = image_pil # Fallback to original image
                 status_message = "Error during mask visualization."

        else:
            print("No masks detected or processed for 'segment everything' mode.")
            status_message = "No segments found or processed."
            output_image = image_pil # Return original image if no masks

        # Save for debugging before returning
        if output_image:
             try:
                 debug_path = "debug_fastsam_everything_output.png"
                 output_image.save(debug_path)
                 print(f"Saved debug output to {debug_path}")
             except Exception as save_err:
                 print(f"Failed to save debug image: {save_err}")

        return output_image, status_message # Return image and status message

    except Exception as e:
        print(f"Error during FastSAM 'everything' processing: {e}")
        traceback.print_exc()
        # Return original image and error message in case of failure
        return image_pil, f"Error during processing: {e}"


def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
     # Add input type check
    if not isinstance(image_pil, Image.Image):
         print(f"FastSAM Text input is not a PIL Image, type: {type(image_pil)}")
         if isinstance(image_pil, np.ndarray):
             try:
                 image_pil = Image.fromarray(image_pil)
                 print("Converted numpy input to PIL Image for FastSAM Text.")
             except Exception as e:
                 print(f"Failed to convert numpy array to PIL Image: {e}")
                 return None, "Error: Invalid image input format."
         else:
             return None, "Error: Please provide a valid image."

    # Ensure model is loaded
    if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None:
        return image_pil, "Error: FastSAM Model not loaded or library unavailable." # Return original image on load fail
    if not text_prompts:
        return image_pil, "Please enter text prompts (e.g., 'person, dog')."

    prompts = [p.strip() for p in text_prompts.split(',') if p.strip()]
    if not prompts:
        return image_pil, "No valid text prompts entered."

    print(f"Running FastSAM text-prompted segmentation for: {prompts} with conf={conf_threshold}, iou={iou_threshold}")
    output_image = None
    status_message = "Processing..."

    try:
        # Ensure image is RGB
        if image_pil.mode != "RGB":
            print(f"Converting image from {image_pil.mode} to RGB for FastSAM.")
            image_pil_rgb = image_pil.convert("RGB")
        else:
            image_pil_rgb = image_pil

        image_np_rgb = np.array(image_pil_rgb)
        print(f"Input image shape for FastSAM Text: {image_np_rgb.shape}")

        # Run FastSAM once to get all potential segments
        everything_results = fastsam_model(
            image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640, # Use consistent args
            conf=conf_threshold, iou=iou_threshold, verbose=True
        )

        # Check results
        if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0:
            print("FastSAM model returned None or empty results for text prompt base.")
            return image_pil, "FastSAM did not return base results."

        # Initialize FastSAMPrompt
        if FastSAMPrompt is None:
             print("FastSAMPrompt class is not available.")
             return image_pil, "Error: FastSAMPrompt class not loaded."
        prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)

        all_matching_masks = []
        found_prompts_details = [] # Store details like 'prompt (count)'

        # Process each text prompt
        for text in prompts:
            print(f"  Processing prompt: '{text}'")
            # Get annotation for the specific text prompt
            ann = prompt_process.text_prompt(text=text)

            # Check annotation format and extract masks
            current_masks = None
            num_found = 0
            # Adjust check based on actual structure of 'ann' for text_prompt
            if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]:
                 mask_tensor = ann[0]['masks']
                 if mask_tensor is not None and mask_tensor.numel() > 0:
                    current_masks = mask_tensor.cpu().numpy()
                    num_found = len(current_masks)
                    print(f"    Found {num_found} mask(s) for '{text}'. Shape: {current_masks.shape}")
                    all_matching_masks.extend(current_masks) # Add found masks to the list
                 else:
                    print(f"    Annotation 'masks' tensor is None or empty for '{text}'.")
            else:
                 print(f"    No masks found or annotation format unexpected for '{text}'. ann type: {type(ann)}")
                 if isinstance(ann, list) and len(ann) > 0:
                     print(f"    First element of ann for '{text}': {ann[0]}")

            found_prompts_details.append(f"{text} ({num_found})") # Record count for status

        # Prepare output image
        output_image = image_pil.copy()
        status_message = f"Results: {', '.join(found_prompts_details)}" if found_prompts_details else "No matches found for any prompt."

        # Draw all collected masks if any were found
        if all_matching_masks:
            print(f"Total masks collected across all prompts: {len(all_matching_masks)}")
            # Stack masks if needed (optional, can draw one by one)
            # masks_np = np.stack(all_matching_masks, axis=0)
            # print(f"Total masks stacked shape: {masks_np.shape}")

            overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
            draw = ImageDraw.Draw(overlay)

            for i, mask in enumerate(all_matching_masks): # Iterate through collected masks
                binary_mask = (mask > 0)
                mask_uint8 = binary_mask.astype(np.uint8) * 255
                if mask_uint8.max() == 0:
                    continue # Skip empty masks

                # Assign a unique color per mask or per prompt (using random here)
                color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
                try:
                    mask_image = Image.fromarray(mask_uint8, mode='L')
                    draw.bitmap((0, 0), mask_image, fill=color)
                except Exception as draw_err:
                    print(f"Error drawing collected mask {i}: {draw_err}")
                    traceback.print_exc()
                    continue

            # Composite the overlay
            try:
                output_image_rgba = output_image.convert('RGBA')
                output_image_composited = Image.alpha_composite(output_image_rgba, overlay)
                output_image = output_image_composited.convert('RGB')
                print("Text prompt mask drawing and compositing finished.")
            except Exception as comp_err:
                print(f"Error during alpha compositing for text prompts: {comp_err}")
                traceback.print_exc()
                output_image = image_pil # Fallback
                status_message += " (Error during visualization)"
        else:
            print("No matching masks found for any text prompt.")
            # status_message is already set

        # Save for debugging
        if output_image:
             try:
                 debug_path = "debug_fastsam_text_output.png"
                 output_image.save(debug_path)
                 print(f"Saved debug output to {debug_path}")
             except Exception as save_err:
                 print(f"Failed to save debug image: {save_err}")

        return output_image, status_message

    except Exception as e:
        print(f"Error during FastSAM text-prompted processing: {e}")
        traceback.print_exc()
        # Return original image and error message
        return image_pil, f"Error during processing: {e}"

# --- Gradio Interface ---

print("Attempting to preload models...")
load_clip_model() # Preload CLIP
load_fastsam_model()  # Preload FastSAM
print("Preloading finished (check logs above for errors).")


# --- Gradio Interface Definition ---
# (Your Gradio Blocks code remains largely the same, but ensure the outputs match the function returns)

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# CLIP & FastSAM Demo")
    gr.Markdown("Explore Zero-Shot Classification, 'Segment Everything', and Text-Prompted Segmentation.")

    with gr.Tabs():
        # --- CLIP Tab ---
        with gr.TabItem("CLIP Zero-Shot Classification"):
            # ... (CLIP UI definition - seems ok) ...
            clip_button.click(
                run_clip_zero_shot,
                inputs=[clip_input_image, clip_text_labels],
                # Output matches: Label (dict/str), Image (PIL/None)
                outputs=[clip_output_label, clip_output_image_display]
            )
            # ... (CLIP Examples - seems ok) ...


        # --- FastSAM Everything Tab ---
        with gr.TabItem("FastSAM Segment Everything"):
            gr.Markdown("Upload an image to segment all objects/regions.")
            with gr.Row():
                with gr.Column(scale=1):
                    fastsam_input_image_all = gr.Image(type="pil", label="Input Image")
                    with gr.Row():
                        fastsam_conf_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
                        fastsam_iou_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
                    fastsam_button_all = gr.Button("Run FastSAM Segmentation", variant="primary")
                with gr.Column(scale=1):
                    # Output for the image
                    fastsam_output_image_all = gr.Image(type="pil", label="Segmented Image")
                    # Add a Textbox for status messages/errors
                    fastsam_status_all = gr.Textbox(label="Status", interactive=False)

            fastsam_button_all.click(
                run_fastsam_segmentation,
                inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
                # Outputs: Image (PIL/None), Status (str)
                outputs=[fastsam_output_image_all, fastsam_status_all] # Updated outputs
            )
            # Update examples if needed to match new output structure (add None/str for status)
            # Note: Examples might need adjustment if they expect only image output
            gr.Examples(
                 examples=[
                     ["examples/dogs.jpg", 0.4, 0.9],
                     ["examples/fruits.jpg", 0.5, 0.8],
                     ["examples/lion.jpg", 0.45, 0.9],
                 ],
                 inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
                 # Need to adjust outputs for examples if function signature changed
                 # This might require a wrapper if examples expect single output
                 # For now, comment out example outputs or adjust function signature for examples
                 outputs=[fastsam_output_image_all, fastsam_status_all],
                 fn=run_fastsam_segmentation,
                 cache_examples=False, # Keep False for debugging
             )

        # --- Text-Prompted Segmentation Tab ---
        with gr.TabItem("Text-Prompted Segmentation"):
            gr.Markdown("Upload an image and provide comma-separated prompts (e.g., 'person, dog').")
            with gr.Row():
                with gr.Column(scale=1):
                    prompt_input_image = gr.Image(type="pil", label="Input Image")
                    prompt_text_input = gr.Textbox(label="Comma-Separated Text Prompts", placeholder="e.g., glasses, watch")
                    with gr.Row():
                        prompt_conf = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
                        prompt_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
                    prompt_button = gr.Button("Segment by Text", variant="primary")
                with gr.Column(scale=1):
                    # Output Image
                    prompt_output_image = gr.Image(type="pil", label="Text-Prompted Segmentation")
                    # Status Textbox (already exists, correctly)
                    prompt_status_message = gr.Textbox(label="Status", interactive=False)

            prompt_button.click(
                run_text_prompted_segmentation,
                inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
                # Outputs: Image (PIL/None), Status (str) - Matches function
                outputs=[prompt_output_image, prompt_status_message]
            )
            # Update examples similarly if needed
            gr.Examples(
                 examples=[
                     ["examples/dog_bike.jpg", "person, bicycle", 0.4, 0.9],
                     ["examples/astronaut.jpg", "person, helmet", 0.35, 0.9],
                     ["examples/dogs.jpg", "dog", 0.4, 0.9],
                     ["examples/fruits.jpg", "banana, apple", 0.5, 0.8],
                     ["examples/teacher.jpg", "person, glasses", 0.4, 0.9],
                 ],
                 inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
                 outputs=[prompt_output_image, prompt_status_message],
                 fn=run_text_prompted_segmentation,
                 cache_examples=False, # Keep False for debugging
             )


    # --- Example File Download ---
    # (Download logic seems okay, ensure 'wget' is installed: pip install wget)
    if not os.path.exists("examples"):
        os.makedirs("examples")
        print("Created 'examples' directory.")
    example_files = {
        "astronaut.jpg": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Astronaut_-_St._Jean_Bay.jpg/640px-Astronaut_-_St._Jean_Bay.jpg",
        "dog_bike.jpg": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio/outputs_multimodal.jpg",
        "clip_logo.png": "https://raw.githubusercontent.com/openai/CLIP/main/CLIP.png",
        "dogs.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image8.jpg",
        "fruits.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image9.jpg",
        "lion.jpg": "https://huggingface.co/spaces/gradio/image-segmentation/resolve/main/images/lion.jpg",
        "teacher.jpg": "https://images.pexels.com/photos/848117/pexels-photo-848117.jpeg?auto=compress&cs=tinysrgb&w=600"
    }
    def download_example_file(filename, url, retries=3):
        filepath = os.path.join("examples", filename)
        if not os.path.exists(filepath):
            print(f"Attempting to download {filename}...")
            for attempt in range(retries):
                try:
                    wget.download(url, filepath)
                    print(f"Downloaded {filename} successfully.")
                    return # Exit function on success
                except Exception as e:
                    print(f"Download attempt {attempt + 1}/{retries} for {filename} failed: {e}")
                    if os.path.exists(filepath): # Clean up partial download
                        try: os.remove(filepath)
                        except OSError: pass
                    if attempt + 1 == retries:
                        print(f"Failed to download {filename} after {retries} attempts.")
        else:
             print(f"Example file {filename} already exists.")

    # Trigger downloads
    for filename, url in example_files.items():
        download_example_file(filename, url)
    print("Example file check/download complete.")


# --- Launch App ---
if __name__ == "__main__":
    print("Launching Gradio Demo...")
    demo.launch(debug=True) # Keep debug=True