Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import AutoProcessor, AutoModel | |
from PIL import Image, ImageDraw, ImageFont | |
import numpy as np | |
import random | |
import os | |
import wget | |
import traceback | |
import sys # Import sys for checking modules | |
# --- Configuration & Model Loading --- | |
# Device Selection with fallback | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {DEVICE}") | |
# --- CLIP Setup --- | |
CLIP_MODEL_ID = "openai/clip-vit-base-patch32" | |
clip_processor = None | |
clip_model = None | |
def load_clip_model(): | |
global clip_processor, clip_model | |
if clip_processor is None: | |
try: | |
print(f"Loading CLIP processor: {CLIP_MODEL_ID}...") | |
clip_processor = AutoProcessor.from_pretrained(CLIP_MODEL_ID) | |
print("CLIP processor loaded.") | |
except Exception as e: | |
print(f"Error loading CLIP processor: {e}") | |
traceback.print_exc() | |
return False | |
if clip_model is None: | |
try: | |
print(f"Loading CLIP model: {CLIP_MODEL_ID}...") | |
clip_model = AutoModel.from_pretrained(CLIP_MODEL_ID).to(DEVICE) | |
print(f"CLIP model loaded to {DEVICE}.") | |
except Exception as e: | |
print(f"Error loading CLIP model: {e}") | |
traceback.print_exc() | |
return False | |
return True | |
# --- FastSAM Setup --- | |
FASTSAM_CHECKPOINT = "FastSAM-s.pt" | |
FASTSAM_CHECKPOINT_URL = f"https://huggingface.co/CASIA-IVA-Lab/FastSAM-s/resolve/main/{FASTSAM_CHECKPOINT}" | |
fastsam_model = None | |
fastsam_lib_imported = False | |
FastSAM = None # Define placeholders | |
FastSAMPrompt = None # Define placeholders | |
def check_and_import_fastsam(): | |
global fastsam_lib_imported, FastSAM, FastSAMPrompt | |
if not fastsam_lib_imported: | |
# Check if ultralytics is installed first, as it's a dependency | |
if 'ultralytics' not in sys.modules: | |
try: | |
# Try importing to trigger potential error if not installed | |
import ultralytics | |
print("Found 'ultralytics' library.") | |
except ImportError: | |
print("\n--- ERROR ---") | |
print("The 'ultralytics' library (required by FastSAM) is not installed.") | |
print("Please install it first: pip install ultralytics") | |
print("---------------\n") | |
return False # Cannot proceed without ultralytics | |
# Now try importing fastsam | |
try: | |
# Use temporary names to avoid conflict if they exist globally somehow | |
from fastsam import FastSAM as FastSAM_lib, FastSAMPrompt as FastSAMPrompt_lib | |
FastSAM = FastSAM_lib # Assign to global placeholder | |
FastSAMPrompt = FastSAMPrompt_lib # Assign to global placeholder | |
fastsam_lib_imported = True | |
print("fastsam library imported successfully.") | |
except ImportError as e: | |
print("\n--- ERROR ---") | |
print("The 'fastsam' library was not found or could not be imported.") | |
print("Please ensure it is installed correctly:") | |
print(" pip install git+https://github.com/CASIA-IVA-Lab/FastSAM.git") | |
print(f"(ImportError: {e})") | |
print("Also ensure 'ultralytics' is installed: pip install ultralytics") | |
print("---------------\n") | |
fastsam_lib_imported = False | |
except Exception as e: | |
print(f"Unexpected error during fastsam import: {e}") | |
traceback.print_exc() | |
fastsam_lib_imported = False | |
return fastsam_lib_imported | |
def download_fastsam_weights(retries=3): | |
if not os.path.exists(FASTSAM_CHECKPOINT): | |
print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...") | |
# Ensure the directory exists if FASTSAM_CHECKPOINT includes a path | |
checkpoint_dir = os.path.dirname(FASTSAM_CHECKPOINT) | |
if checkpoint_dir and not os.path.exists(checkpoint_dir): | |
try: | |
os.makedirs(checkpoint_dir) | |
print(f"Created directory for weights: {checkpoint_dir}") | |
except OSError as e: | |
print(f"Error creating directory {checkpoint_dir}: {e}") | |
return False | |
for attempt in range(retries): | |
try: | |
wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT) | |
print("FastSAM weights downloaded successfully.") | |
return True # Return True on successful download | |
except Exception as e: | |
print(f"Attempt {attempt + 1}/{retries} failed to download FastSAM weights: {e}") | |
if os.path.exists(FASTSAM_CHECKPOINT): # Cleanup partial download | |
try: | |
os.remove(FASTSAM_CHECKPOINT) | |
except OSError: | |
pass | |
if attempt + 1 == retries: | |
print("Failed to download weights after all attempts.") | |
return False | |
return False # Should not be reached if loop completes correctly | |
else: | |
print(f"FastSAM weights file '{FASTSAM_CHECKPOINT}' already exists.") | |
return True # Weights exist | |
def load_fastsam_model(): | |
global fastsam_model | |
if fastsam_model is None: | |
print("Attempting to load FastSAM model...") | |
if not check_and_import_fastsam(): | |
print("Cannot load FastSAM model due to library import failure.") | |
return False | |
if not download_fastsam_weights(): | |
print("Cannot load FastSAM model because weights are missing or download failed.") | |
return False | |
# Ensure FastSAM class is available (double check after import attempt) | |
if FastSAM is None: | |
print("FastSAM class reference is None, cannot instantiate model.") | |
return False | |
try: | |
print(f"Loading FastSAM model from checkpoint: {FASTSAM_CHECKPOINT}...") | |
# Instantiate the imported FastSAM class | |
fastsam_model = FastSAM(FASTSAM_CHECKPOINT) | |
# Note: FastSAM typically handles device placement internally based on constructor args or method calls. | |
# If you face device issues, check FastSAM's documentation for explicit device moving. | |
# Example: Some models might need fastsam_model.model.to(DEVICE) - check structure. | |
print("FastSAM model loaded successfully.") | |
return True | |
except Exception as e: | |
print(f"Error loading FastSAM model weights or initializing: {e}") | |
traceback.print_exc() | |
fastsam_model = None # Ensure model is None if loading failed | |
return False | |
# Model already loaded | |
# print("FastSAM model already loaded.") # Optional: uncomment for debugging reuse | |
return True | |
# --- Processing Functions --- | |
def run_clip_zero_shot(image: Image.Image, text_labels: str): | |
# Input validation | |
if image is None: | |
return "Error: Please upload an image.", None # Return None for image component | |
if not isinstance(image, Image.Image): | |
print(f"CLIP input is not a PIL Image, type: {type(image)}. Attempting conversion.") | |
if isinstance(image, np.ndarray): | |
try: | |
image = Image.fromarray(image) | |
print("Converted numpy input to PIL Image for CLIP.") | |
except Exception as e: | |
print(f"Failed to convert numpy array to PIL Image: {e}") | |
return "Error: Invalid image input format.", None | |
else: | |
return "Error: Please provide a valid image.", None | |
# Model loading check | |
if clip_model is None or clip_processor is None: | |
if not load_clip_model(): | |
return "Error: CLIP Model could not be loaded.", None | |
# Label check | |
if not text_labels: | |
return {}, image # Return empty dict and original image if no labels | |
labels = [label.strip() for label in text_labels.split(',') if label.strip()] | |
if not labels: | |
return {}, image # Return empty dict and original image if no valid labels | |
print(f"Running CLIP zero-shot classification with labels: {labels}") | |
try: | |
# Ensure image is RGB | |
if image.mode != "RGB": | |
print(f"Converting image from {image.mode} to RGB for CLIP.") | |
image = image.convert("RGB") | |
inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE) | |
with torch.no_grad(): | |
outputs = clip_model(**inputs) | |
logits_per_image = outputs.logits_per_image | |
probs = logits_per_image.softmax(dim=1) | |
confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))} | |
print(f"CLIP Confidences: {confidences}") | |
return confidences, image | |
except Exception as e: | |
print(f"Error during CLIP processing: {e}") | |
traceback.print_exc() | |
return f"Error during CLIP processing: {e}", None | |
def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9): | |
# Input validation | |
if image_pil is None: | |
return None, "Error: Please upload an image." | |
if not isinstance(image_pil, Image.Image): | |
print(f"FastSAM input is not a PIL Image, type: {type(image_pil)}. Attempting conversion.") | |
if isinstance(image_pil, np.ndarray): | |
try: | |
image_pil = Image.fromarray(image_pil) | |
print("Converted numpy input to PIL Image for FastSAM.") | |
except Exception as e: | |
print(f"Failed to convert numpy array to PIL Image: {e}") | |
return None, "Error: Invalid image input format." | |
else: | |
return None, "Error: Please provide a valid image." | |
# Model loading check | |
if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None: | |
return image_pil, "Error: FastSAM model/library not ready. Check logs." # Return original image if model failed | |
print(f"Running FastSAM 'segment everything' with conf={conf_threshold}, iou={iou_threshold}...") | |
output_image = None | |
status_message = "Processing..." | |
try: | |
# Ensure image is RGB | |
if image_pil.mode != "RGB": | |
print(f"Converting image from {image_pil.mode} to RGB for FastSAM.") | |
image_pil_rgb = image_pil.convert("RGB") | |
else: | |
image_pil_rgb = image_pil | |
image_np_rgb = np.array(image_pil_rgb) | |
print(f"Input image shape for FastSAM: {image_np_rgb.shape}") | |
# Run FastSAM model | |
everything_results = fastsam_model( | |
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640, # Adjust imgsz if needed | |
conf=conf_threshold, iou=iou_threshold, verbose=False # Set verbose=False for cleaner logs unless debugging | |
) | |
# Check results type and content (FastSAM results format might vary) | |
# Typically a list of result objects, or similar structure | |
if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0: | |
print("FastSAM model returned None or empty results list.") | |
return image_pil, "FastSAM processing returned no results." | |
# Assuming the first result object contains the relevant data | |
first_result = everything_results[0] | |
# --- IMPORTANT: Inspect the 'first_result' object --- | |
# Use print(dir(first_result)), print(type(first_result)) etc. if unsure | |
# Common attributes might be .masks, .boxes, .names | |
# print(f"Type of first_result: {type(first_result)}") | |
# print(f"Attributes of first_result: {dir(first_result)}") | |
# Initialize FastSAMPrompt | |
if FastSAMPrompt is None: | |
print("FastSAMPrompt class is not available.") | |
return image_pil, "Error: FastSAMPrompt class not loaded." | |
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE) | |
ann = prompt_process.everything_prompt() # Get all annotations | |
# Check annotation format - Adapt based on actual FastSAM/FastSAMPrompt output | |
masks = None | |
# Expected format: list containing a dict with 'masks' tensor | |
if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]: | |
mask_tensor = ann[0]['masks'] | |
if mask_tensor is not None and isinstance(mask_tensor, torch.Tensor) and mask_tensor.numel() > 0: | |
masks = mask_tensor.cpu().numpy() | |
print(f"Found {len(masks)} masks with shape: {masks.shape}") | |
else: | |
print("Annotation 'masks' tensor is None, not a Tensor, or empty.") | |
else: | |
print(f"No masks found or annotation format unexpected. ann type: {type(ann)}") | |
if isinstance(ann, list) and len(ann) > 0: print(f"First element of ann: {ann[0]}") | |
# Prepare output image | |
output_image = image_pil.copy() | |
# Draw masks if found | |
if masks is not None and len(masks) > 0: | |
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0)) | |
draw = ImageDraw.Draw(overlay) | |
valid_masks_drawn = 0 | |
for i, mask in enumerate(masks): | |
binary_mask = (mask > 0) # Use threshold 0 for binary mask | |
mask_uint8 = binary_mask.astype(np.uint8) * 255 | |
if mask_uint8.max() == 0: continue # Skip empty masks | |
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180) | |
try: | |
mask_image = Image.fromarray(mask_uint8, mode='L') | |
draw.bitmap((0, 0), mask_image, fill=color) | |
valid_masks_drawn += 1 | |
except Exception as draw_err: | |
print(f"Error drawing mask {i}: {draw_err}") | |
traceback.print_exc() | |
if valid_masks_drawn > 0: | |
try: | |
output_image_rgba = output_image.convert('RGBA') | |
output_image_composited = Image.alpha_composite(output_image_rgba, overlay) | |
output_image = output_image_composited.convert('RGB') | |
status_message = f"Segmentation complete. Found and drew {valid_masks_drawn} masks." | |
print("Mask drawing and compositing finished.") | |
except Exception as comp_err: | |
print(f"Error during alpha compositing: {comp_err}") | |
traceback.print_exc() | |
output_image = image_pil # Fallback | |
status_message = f"Found {valid_masks_drawn} masks, but error during visualization." | |
else: | |
status_message = f"Found {len(masks)} masks initially, but none were valid for drawing." | |
output_image = image_pil # Return original if no valid masks drawn | |
else: | |
print("No masks detected or processed for 'segment everything' mode.") | |
status_message = "No segments found or processed." | |
output_image = image_pil # Return original image | |
# Save for debugging before returning | |
if output_image: | |
try: | |
output_image.save("debug_fastsam_everything_output.png") | |
except Exception as save_err: | |
print(f"Failed to save debug image: {save_err}") | |
return output_image, status_message | |
except Exception as e: | |
print(f"Error during FastSAM 'everything' processing: {e}") | |
traceback.print_exc() | |
return image_pil, f"Error during processing: {e}" # Return original image and error | |
def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9): | |
# Input validation | |
if image_pil is None: | |
return None, "Error: Please upload an image." | |
if not isinstance(image_pil, Image.Image): | |
print(f"FastSAM Text input is not a PIL Image, type: {type(image_pil)}. Attempting conversion.") | |
if isinstance(image_pil, np.ndarray): | |
try: | |
image_pil = Image.fromarray(image_pil) | |
print("Converted numpy input to PIL Image for FastSAM Text.") | |
except Exception as e: | |
print(f"Failed to convert numpy array to PIL Image: {e}") | |
return None, "Error: Invalid image input format." | |
else: | |
return None, "Error: Please provide a valid image." | |
# Model loading check | |
if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None: | |
return image_pil, "Error: FastSAM model/library not ready. Check logs." | |
if not text_prompts: | |
return image_pil, "Please enter text prompts (e.g., 'person, dog')." | |
prompts = [p.strip() for p in text_prompts.split(',') if p.strip()] | |
if not prompts: | |
return image_pil, "No valid text prompts entered." | |
print(f"Running FastSAM text-prompted segmentation for: {prompts} with conf={conf_threshold}, iou={iou_threshold}") | |
output_image = None | |
status_message = "Processing..." | |
try: | |
# Ensure image is RGB | |
if image_pil.mode != "RGB": | |
print(f"Converting image from {image_pil.mode} to RGB for FastSAM.") | |
image_pil_rgb = image_pil.convert("RGB") | |
else: | |
image_pil_rgb = image_pil | |
image_np_rgb = np.array(image_pil_rgb) | |
print(f"Input image shape for FastSAM Text: {image_np_rgb.shape}") | |
# Run FastSAM once to get all potential segments | |
everything_results = fastsam_model( | |
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640, | |
conf=conf_threshold, iou=iou_threshold, verbose=False # Set verbose=False usually | |
) | |
if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0: | |
print("FastSAM model returned None or empty results for text prompt base.") | |
return image_pil, "FastSAM did not return base results needed for text prompting." | |
# Initialize FastSAMPrompt | |
if FastSAMPrompt is None: | |
print("FastSAMPrompt class is not available.") | |
return image_pil, "Error: FastSAMPrompt class not loaded." | |
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE) | |
all_matching_masks = [] | |
found_prompts_details = [] | |
# Process each text prompt | |
for text in prompts: | |
print(f" Processing prompt: '{text}'") | |
ann = prompt_process.text_prompt(text=text) | |
current_masks = None | |
num_found = 0 | |
# Check annotation format - adapt based on text_prompt output structure | |
if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]: | |
mask_tensor = ann[0]['masks'] | |
if mask_tensor is not None and isinstance(mask_tensor, torch.Tensor) and mask_tensor.numel() > 0: | |
current_masks = mask_tensor.cpu().numpy() | |
num_found = len(current_masks) | |
print(f" Found {num_found} mask(s) for '{text}'. Shape: {current_masks.shape}") | |
all_matching_masks.extend(current_masks) # Add found masks | |
else: | |
print(f" Annotation 'masks' tensor is None, not a Tensor, or empty for '{text}'.") | |
else: | |
print(f" No masks found or annotation format unexpected for '{text}'. ann type: {type(ann)}") | |
if isinstance(ann, list) and len(ann) > 0: print(f" First element of ann for '{text}': {ann[0]}") | |
found_prompts_details.append(f"{text} ({num_found})") | |
# Prepare output image | |
output_image = image_pil.copy() | |
status_message = f"Results: {', '.join(found_prompts_details)}" if found_prompts_details else "No matches found for any prompt." | |
# Draw all collected masks if any were found | |
if all_matching_masks: | |
print(f"Total masks collected across all prompts: {len(all_matching_masks)}") | |
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0)) | |
draw = ImageDraw.Draw(overlay) | |
valid_masks_drawn = 0 | |
for i, mask in enumerate(all_matching_masks): | |
binary_mask = (mask > 0) | |
mask_uint8 = binary_mask.astype(np.uint8) * 255 | |
if mask_uint8.max() == 0: continue | |
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180) | |
try: | |
mask_image = Image.fromarray(mask_uint8, mode='L') | |
draw.bitmap((0, 0), mask_image, fill=color) | |
valid_masks_drawn += 1 | |
except Exception as draw_err: | |
print(f"Error drawing collected mask {i}: {draw_err}") | |
traceback.print_exc() | |
if valid_masks_drawn > 0: | |
try: | |
output_image_rgba = output_image.convert('RGBA') | |
output_image_composited = Image.alpha_composite(output_image_rgba, overlay) | |
output_image = output_image_composited.convert('RGB') | |
print("Text prompt mask drawing and compositing finished.") | |
# Append drawing status if needed | |
if valid_masks_drawn < len(all_matching_masks): | |
status_message += f" (Drew {valid_masks_drawn}/{len(all_matching_masks)} found masks)" | |
except Exception as comp_err: | |
print(f"Error during alpha compositing for text prompts: {comp_err}") | |
traceback.print_exc() | |
output_image = image_pil # Fallback | |
status_message += " (Error during visualization)" | |
else: | |
output_image = image_pil # Return original if no masks drawn | |
status_message += " (No valid masks to draw)" | |
else: | |
print("No matching masks found for any text prompt.") | |
output_image = image_pil # Return original image | |
# Save for debugging | |
if output_image: | |
try: | |
output_image.save("debug_fastsam_text_output.png") | |
except Exception as save_err: | |
print(f"Failed to save debug image: {save_err}") | |
return output_image, status_message | |
except Exception as e: | |
print(f"Error during FastSAM text-prompted processing: {e}") | |
traceback.print_exc() | |
return image_pil, f"Error during processing: {e}" | |
# --- Preload Models --- | |
print("Attempting to preload models...") | |
load_clip_model() | |
load_fastsam_model() # Try to load FastSAM eagerly | |
print("Preloading finished (check logs above for success/errors).") | |
# --- Gradio Interface Definition --- | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# CLIP & FastSAM Demo") | |
gr.Markdown("Explore Zero-Shot Classification, 'Segment Everything', and Text-Prompted Segmentation.") | |
gr.Markdown("---") | |
gr.Markdown("**NOTE:** Ensure required libraries are installed: `pip install --upgrade gradio torch transformers Pillow numpy wget ultralytics` and `pip install git+https://github.com/CASIA-IVA-Lab/FastSAM.git`") | |
gr.Markdown("---") | |
with gr.Tabs(): | |
# --- CLIP Tab --- | |
with gr.TabItem("CLIP Zero-Shot Classification"): | |
gr.Markdown("Upload an image and provide comma-separated labels (e.g., 'cat, dog, car').") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
# Define UI elements first | |
clip_input_image = gr.Image(type="pil", label="Input Image") | |
clip_text_labels = gr.Textbox(label="Comma-Separated Labels", placeholder="e.g., astronaut, moon") | |
clip_button = gr.Button("Run CLIP Classification", variant="primary") | |
with gr.Column(scale=1): | |
clip_output_label = gr.Label(label="Classification Probabilities") | |
clip_output_image_display = gr.Image(type="pil", label="Input Image Preview", interactive=False) | |
# Define the click handler AFTER elements are defined | |
clip_button.click( | |
run_clip_zero_shot, | |
inputs=[clip_input_image, clip_text_labels], | |
outputs=[clip_output_label, clip_output_image_display] | |
) | |
gr.Examples( | |
examples=[ | |
["examples/astronaut.jpg", "astronaut, moon, rover"], | |
["examples/dog_bike.jpg", "dog, bicycle, person"], | |
["examples/clip_logo.png", "logo, text, graphics"], | |
], | |
inputs=[clip_input_image, clip_text_labels], | |
outputs=[clip_output_label, clip_output_image_display], | |
fn=run_clip_zero_shot, | |
cache_examples=False, # Keep False during debugging | |
) | |
# --- FastSAM Everything Tab --- | |
with gr.TabItem("FastSAM Segment Everything"): | |
gr.Markdown("Upload an image to segment all objects/regions.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
# Define UI elements first | |
fastsam_input_image_all = gr.Image(type="pil", label="Input Image") | |
with gr.Row(): | |
fastsam_conf_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold") | |
fastsam_iou_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold") | |
fastsam_button_all = gr.Button("Run FastSAM Segmentation", variant="primary") | |
with gr.Column(scale=1): | |
fastsam_output_image_all = gr.Image(type="pil", label="Segmented Image", interactive=False) | |
fastsam_status_all = gr.Textbox(label="Status", interactive=False) | |
# Define the click handler AFTER elements are defined | |
fastsam_button_all.click( | |
run_fastsam_segmentation, | |
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all], # Correct inputs list | |
outputs=[fastsam_output_image_all, fastsam_status_all] | |
) | |
gr.Examples( | |
examples=[ | |
["examples/dogs.jpg", 0.4, 0.9], | |
["examples/fruits.jpg", 0.5, 0.8], | |
["examples/lion.jpg", 0.45, 0.9], | |
], | |
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all], | |
outputs=[fastsam_output_image_all, fastsam_status_all], | |
fn=run_fastsam_segmentation, | |
cache_examples=False, | |
) | |
# --- Text-Prompted Segmentation Tab --- | |
with gr.TabItem("Text-Prompted Segmentation"): | |
gr.Markdown("Upload an image and provide comma-separated prompts (e.g., 'person, dog').") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
# Define UI elements first | |
prompt_input_image = gr.Image(type="pil", label="Input Image") | |
prompt_text_input = gr.Textbox(label="Comma-Separated Text Prompts", placeholder="e.g., glasses, watch") | |
with gr.Row(): | |
prompt_conf = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold") | |
prompt_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold") | |
prompt_button = gr.Button("Segment by Text", variant="primary") | |
with gr.Column(scale=1): | |
prompt_output_image = gr.Image(type="pil", label="Text-Prompted Segmentation", interactive=False) | |
prompt_status_message = gr.Textbox(label="Status", interactive=False) | |
# Define the click handler AFTER elements are defined | |
prompt_button.click( | |
run_text_prompted_segmentation, | |
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou], # Correct inputs list | |
outputs=[prompt_output_image, prompt_status_message] | |
) | |
gr.Examples( | |
examples=[ | |
["examples/dog_bike.jpg", "person, bicycle", 0.4, 0.9], | |
["examples/astronaut.jpg", "person, helmet", 0.35, 0.9], | |
["examples/dogs.jpg", "dog", 0.4, 0.9], | |
["examples/fruits.jpg", "banana, apple", 0.5, 0.8], | |
["examples/teacher.jpg", "person, glasses", 0.4, 0.9], | |
], | |
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou], | |
outputs=[prompt_output_image, prompt_status_message], | |
fn=run_text_prompted_segmentation, | |
cache_examples=False, | |
) | |
# --- Example File Download --- | |
# (This logic should be outside the `with gr.Blocks...` block) | |
if not os.path.exists("examples"): | |
try: | |
os.makedirs("examples") | |
print("Created 'examples' directory.") | |
except OSError as e: | |
print(f"Error creating 'examples' directory: {e}") | |
example_files = { | |
"astronaut.jpg": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Astronaut_-_St._Jean_Bay.jpg/640px-Astronaut_-_St._Jean_Bay.jpg", | |
"dog_bike.jpg": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio/outputs_multimodal.jpg", | |
"clip_logo.png": "https://raw.githubusercontent.com/openai/CLIP/main/CLIP.png", | |
"dogs.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image8.jpg", | |
"fruits.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image9.jpg", | |
"lion.jpg": "https://huggingface.co/spaces/gradio/image-segmentation/resolve/main/images/lion.jpg", | |
"teacher.jpg": "https://images.pexels.com/photos/848117/pexels-photo-848117.jpeg?auto=compress&cs=tinysrgb&w=600" | |
} | |
def download_example_file(filename, url, retries=3): | |
filepath = os.path.join("examples", filename) | |
if not os.path.exists(filepath): | |
print(f"Attempting to download {filename}...") | |
for attempt in range(retries): | |
try: | |
wget.download(url, filepath) | |
print(f"Downloaded {filename} successfully.") | |
return # Exit function on success | |
except Exception as e: | |
print(f"Download attempt {attempt + 1}/{retries} for {filename} failed: {e}") | |
if os.path.exists(filepath): # Clean up partial download | |
try: os.remove(filepath) | |
except OSError: pass | |
if attempt + 1 == retries: | |
print(f"Failed to download {filename} after {retries} attempts.") | |
# else: # Optional: uncomment if you want confirmation for existing files | |
# print(f"Example file {filename} already exists.") | |
# Trigger downloads if directory exists | |
if os.path.exists("examples"): | |
for filename, url in example_files.items(): | |
download_example_file(filename, url) | |
print("Example file check/download process complete.") | |
else: | |
print("Skipping example download because 'examples' directory could not be created.") | |
# --- Launch App --- | |
if __name__ == "__main__": | |
print("-----------------------------------------") | |
print("Launching Gradio Demo...") | |
print("Ensure FastSAM model and weights are correctly loaded (check logs above).") | |
print("If FastSAM fails, check installation: pip install ultralytics && pip install git+https://github.com/CASIA-IVA-Lab/FastSAM.git") | |
print("-----------------------------------------") | |
demo.launch(debug=True) # Keep debug=True for detailed Gradio errors |