Spaces:
Running
Running
File size: 32,105 Bytes
dfdcd97 a3ee867 03c5849 b066832 fd55cab b066832 eefe5b4 03c5849 0747bb5 b066832 03c5849 0747bb5 b066832 03c5849 b066832 23fa119 0747bb5 03c5849 b066832 23fa119 0747bb5 03c5849 b066832 eba2946 b066832 03c5849 2d0f294 eba2946 0747bb5 eba2946 0747bb5 eba2946 0747bb5 eba2946 03c5849 0747bb5 eba2946 03c5849 23fa119 eba2946 03c5849 b066832 eba2946 0747bb5 03c5849 0747bb5 2d0f294 03c5849 2d0f294 03c5849 0747bb5 2d0f294 0747bb5 2d0f294 b066832 0747bb5 23fa119 03c5849 0747bb5 03c5849 2d0f294 0747bb5 03c5849 3cd1243 b066832 6facde6 b066832 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 b066832 23fa119 03c5849 0747bb5 03c5849 0747bb5 6facde6 23fa119 03c5849 0747bb5 6facde6 b066832 2d0f294 03c5849 2d0f294 03c5849 2d0f294 b066832 0747bb5 2d0f294 b066832 2d0f294 eba2946 0747bb5 6facde6 b066832 eba2946 2d0f294 6facde6 b066832 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 23fa119 2d0f294 03c5849 2d0f294 eba2946 2d0f294 23fa119 0747bb5 23fa119 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 23fa119 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 23fa119 2d0f294 23fa119 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 03c5849 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 23fa119 0747bb5 2d0f294 23fa119 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 23fa119 03c5849 e0d4d2f 23fa119 2d0f294 3d6a9c7 2d0f294 b066832 2d0f294 72f4c5c 2d0f294 b066832 0747bb5 b066832 2d0f294 0747bb5 2d0f294 b066832 2d0f294 23fa119 0747bb5 23fa119 2d0f294 23fa119 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 23fa119 2d0f294 0747bb5 23fa119 0747bb5 2d0f294 b066832 2d0f294 6facde6 2d0f294 03c5849 2d0f294 03c5849 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 03c5849 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 0747bb5 2d0f294 23fa119 2d0f294 eefe5b4 23fa119 eba2946 2d0f294 6facde6 0747bb5 b066832 0747bb5 2d0f294 0747bb5 b066832 0747bb5 b066832 0747bb5 b066832 0747bb5 599a500 0747bb5 599a500 0747bb5 599a500 0747bb5 599a500 0747bb5 b066832 6facde6 0747bb5 23fa119 0747bb5 2d0f294 0747bb5 03c5849 0747bb5 22401e9 03c5849 599a500 0747bb5 23fa119 0747bb5 2d0f294 0747bb5 23fa119 0747bb5 b066832 2d0f294 0747bb5 03c5849 0747bb5 b066832 0747bb5 2d0f294 0747bb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 |
import gradio as gr
import torch
from transformers import AutoProcessor, AutoModel
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import random
import os
import wget
import traceback
import sys # Import sys for checking modules
# --- Configuration & Model Loading ---
# Device Selection with fallback
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")
# --- CLIP Setup ---
CLIP_MODEL_ID = "openai/clip-vit-base-patch32"
clip_processor = None
clip_model = None
def load_clip_model():
global clip_processor, clip_model
if clip_processor is None:
try:
print(f"Loading CLIP processor: {CLIP_MODEL_ID}...")
clip_processor = AutoProcessor.from_pretrained(CLIP_MODEL_ID)
print("CLIP processor loaded.")
except Exception as e:
print(f"Error loading CLIP processor: {e}")
traceback.print_exc()
return False
if clip_model is None:
try:
print(f"Loading CLIP model: {CLIP_MODEL_ID}...")
clip_model = AutoModel.from_pretrained(CLIP_MODEL_ID).to(DEVICE)
print(f"CLIP model loaded to {DEVICE}.")
except Exception as e:
print(f"Error loading CLIP model: {e}")
traceback.print_exc()
return False
return True
# --- FastSAM Setup ---
FASTSAM_CHECKPOINT = "FastSAM-s.pt"
FASTSAM_CHECKPOINT_URL = f"https://huggingface.co/CASIA-IVA-Lab/FastSAM-s/resolve/main/{FASTSAM_CHECKPOINT}"
fastsam_model = None
fastsam_lib_imported = False
FastSAM = None # Define placeholders
FastSAMPrompt = None # Define placeholders
def check_and_import_fastsam():
global fastsam_lib_imported, FastSAM, FastSAMPrompt
if not fastsam_lib_imported:
# Check if ultralytics is installed first, as it's a dependency
if 'ultralytics' not in sys.modules:
try:
# Try importing to trigger potential error if not installed
import ultralytics
print("Found 'ultralytics' library.")
except ImportError:
print("\n--- ERROR ---")
print("The 'ultralytics' library (required by FastSAM) is not installed.")
print("Please install it first: pip install ultralytics")
print("---------------\n")
return False # Cannot proceed without ultralytics
# Now try importing fastsam
try:
# Use temporary names to avoid conflict if they exist globally somehow
from fastsam import FastSAM as FastSAM_lib, FastSAMPrompt as FastSAMPrompt_lib
FastSAM = FastSAM_lib # Assign to global placeholder
FastSAMPrompt = FastSAMPrompt_lib # Assign to global placeholder
fastsam_lib_imported = True
print("fastsam library imported successfully.")
except ImportError as e:
print("\n--- ERROR ---")
print("The 'fastsam' library was not found or could not be imported.")
print("Please ensure it is installed correctly:")
print(" pip install git+https://github.com/CASIA-IVA-Lab/FastSAM.git")
print(f"(ImportError: {e})")
print("Also ensure 'ultralytics' is installed: pip install ultralytics")
print("---------------\n")
fastsam_lib_imported = False
except Exception as e:
print(f"Unexpected error during fastsam import: {e}")
traceback.print_exc()
fastsam_lib_imported = False
return fastsam_lib_imported
def download_fastsam_weights(retries=3):
if not os.path.exists(FASTSAM_CHECKPOINT):
print(f"Downloading FastSAM weights: {FASTSAM_CHECKPOINT} from {FASTSAM_CHECKPOINT_URL}...")
# Ensure the directory exists if FASTSAM_CHECKPOINT includes a path
checkpoint_dir = os.path.dirname(FASTSAM_CHECKPOINT)
if checkpoint_dir and not os.path.exists(checkpoint_dir):
try:
os.makedirs(checkpoint_dir)
print(f"Created directory for weights: {checkpoint_dir}")
except OSError as e:
print(f"Error creating directory {checkpoint_dir}: {e}")
return False
for attempt in range(retries):
try:
wget.download(FASTSAM_CHECKPOINT_URL, FASTSAM_CHECKPOINT)
print("FastSAM weights downloaded successfully.")
return True # Return True on successful download
except Exception as e:
print(f"Attempt {attempt + 1}/{retries} failed to download FastSAM weights: {e}")
if os.path.exists(FASTSAM_CHECKPOINT): # Cleanup partial download
try:
os.remove(FASTSAM_CHECKPOINT)
except OSError:
pass
if attempt + 1 == retries:
print("Failed to download weights after all attempts.")
return False
return False # Should not be reached if loop completes correctly
else:
print(f"FastSAM weights file '{FASTSAM_CHECKPOINT}' already exists.")
return True # Weights exist
def load_fastsam_model():
global fastsam_model
if fastsam_model is None:
print("Attempting to load FastSAM model...")
if not check_and_import_fastsam():
print("Cannot load FastSAM model due to library import failure.")
return False
if not download_fastsam_weights():
print("Cannot load FastSAM model because weights are missing or download failed.")
return False
# Ensure FastSAM class is available (double check after import attempt)
if FastSAM is None:
print("FastSAM class reference is None, cannot instantiate model.")
return False
try:
print(f"Loading FastSAM model from checkpoint: {FASTSAM_CHECKPOINT}...")
# Instantiate the imported FastSAM class
fastsam_model = FastSAM(FASTSAM_CHECKPOINT)
# Note: FastSAM typically handles device placement internally based on constructor args or method calls.
# If you face device issues, check FastSAM's documentation for explicit device moving.
# Example: Some models might need fastsam_model.model.to(DEVICE) - check structure.
print("FastSAM model loaded successfully.")
return True
except Exception as e:
print(f"Error loading FastSAM model weights or initializing: {e}")
traceback.print_exc()
fastsam_model = None # Ensure model is None if loading failed
return False
# Model already loaded
# print("FastSAM model already loaded.") # Optional: uncomment for debugging reuse
return True
# --- Processing Functions ---
def run_clip_zero_shot(image: Image.Image, text_labels: str):
# Input validation
if image is None:
return "Error: Please upload an image.", None # Return None for image component
if not isinstance(image, Image.Image):
print(f"CLIP input is not a PIL Image, type: {type(image)}. Attempting conversion.")
if isinstance(image, np.ndarray):
try:
image = Image.fromarray(image)
print("Converted numpy input to PIL Image for CLIP.")
except Exception as e:
print(f"Failed to convert numpy array to PIL Image: {e}")
return "Error: Invalid image input format.", None
else:
return "Error: Please provide a valid image.", None
# Model loading check
if clip_model is None or clip_processor is None:
if not load_clip_model():
return "Error: CLIP Model could not be loaded.", None
# Label check
if not text_labels:
return {}, image # Return empty dict and original image if no labels
labels = [label.strip() for label in text_labels.split(',') if label.strip()]
if not labels:
return {}, image # Return empty dict and original image if no valid labels
print(f"Running CLIP zero-shot classification with labels: {labels}")
try:
# Ensure image is RGB
if image.mode != "RGB":
print(f"Converting image from {image.mode} to RGB for CLIP.")
image = image.convert("RGB")
inputs = clip_processor(text=labels, images=image, return_tensors="pt", padding=True).to(DEVICE)
with torch.no_grad():
outputs = clip_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
confidences = {labels[i]: float(probs[0, i].item()) for i in range(len(labels))}
print(f"CLIP Confidences: {confidences}")
return confidences, image
except Exception as e:
print(f"Error during CLIP processing: {e}")
traceback.print_exc()
return f"Error during CLIP processing: {e}", None
def run_fastsam_segmentation(image_pil: Image.Image, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
# Input validation
if image_pil is None:
return None, "Error: Please upload an image."
if not isinstance(image_pil, Image.Image):
print(f"FastSAM input is not a PIL Image, type: {type(image_pil)}. Attempting conversion.")
if isinstance(image_pil, np.ndarray):
try:
image_pil = Image.fromarray(image_pil)
print("Converted numpy input to PIL Image for FastSAM.")
except Exception as e:
print(f"Failed to convert numpy array to PIL Image: {e}")
return None, "Error: Invalid image input format."
else:
return None, "Error: Please provide a valid image."
# Model loading check
if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None:
return image_pil, "Error: FastSAM model/library not ready. Check logs." # Return original image if model failed
print(f"Running FastSAM 'segment everything' with conf={conf_threshold}, iou={iou_threshold}...")
output_image = None
status_message = "Processing..."
try:
# Ensure image is RGB
if image_pil.mode != "RGB":
print(f"Converting image from {image_pil.mode} to RGB for FastSAM.")
image_pil_rgb = image_pil.convert("RGB")
else:
image_pil_rgb = image_pil
image_np_rgb = np.array(image_pil_rgb)
print(f"Input image shape for FastSAM: {image_np_rgb.shape}")
# Run FastSAM model
everything_results = fastsam_model(
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640, # Adjust imgsz if needed
conf=conf_threshold, iou=iou_threshold, verbose=False # Set verbose=False for cleaner logs unless debugging
)
# Check results type and content (FastSAM results format might vary)
# Typically a list of result objects, or similar structure
if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0:
print("FastSAM model returned None or empty results list.")
return image_pil, "FastSAM processing returned no results."
# Assuming the first result object contains the relevant data
first_result = everything_results[0]
# --- IMPORTANT: Inspect the 'first_result' object ---
# Use print(dir(first_result)), print(type(first_result)) etc. if unsure
# Common attributes might be .masks, .boxes, .names
# print(f"Type of first_result: {type(first_result)}")
# print(f"Attributes of first_result: {dir(first_result)}")
# Initialize FastSAMPrompt
if FastSAMPrompt is None:
print("FastSAMPrompt class is not available.")
return image_pil, "Error: FastSAMPrompt class not loaded."
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
ann = prompt_process.everything_prompt() # Get all annotations
# Check annotation format - Adapt based on actual FastSAM/FastSAMPrompt output
masks = None
# Expected format: list containing a dict with 'masks' tensor
if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]:
mask_tensor = ann[0]['masks']
if mask_tensor is not None and isinstance(mask_tensor, torch.Tensor) and mask_tensor.numel() > 0:
masks = mask_tensor.cpu().numpy()
print(f"Found {len(masks)} masks with shape: {masks.shape}")
else:
print("Annotation 'masks' tensor is None, not a Tensor, or empty.")
else:
print(f"No masks found or annotation format unexpected. ann type: {type(ann)}")
if isinstance(ann, list) and len(ann) > 0: print(f"First element of ann: {ann[0]}")
# Prepare output image
output_image = image_pil.copy()
# Draw masks if found
if masks is not None and len(masks) > 0:
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
valid_masks_drawn = 0
for i, mask in enumerate(masks):
binary_mask = (mask > 0) # Use threshold 0 for binary mask
mask_uint8 = binary_mask.astype(np.uint8) * 255
if mask_uint8.max() == 0: continue # Skip empty masks
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
try:
mask_image = Image.fromarray(mask_uint8, mode='L')
draw.bitmap((0, 0), mask_image, fill=color)
valid_masks_drawn += 1
except Exception as draw_err:
print(f"Error drawing mask {i}: {draw_err}")
traceback.print_exc()
if valid_masks_drawn > 0:
try:
output_image_rgba = output_image.convert('RGBA')
output_image_composited = Image.alpha_composite(output_image_rgba, overlay)
output_image = output_image_composited.convert('RGB')
status_message = f"Segmentation complete. Found and drew {valid_masks_drawn} masks."
print("Mask drawing and compositing finished.")
except Exception as comp_err:
print(f"Error during alpha compositing: {comp_err}")
traceback.print_exc()
output_image = image_pil # Fallback
status_message = f"Found {valid_masks_drawn} masks, but error during visualization."
else:
status_message = f"Found {len(masks)} masks initially, but none were valid for drawing."
output_image = image_pil # Return original if no valid masks drawn
else:
print("No masks detected or processed for 'segment everything' mode.")
status_message = "No segments found or processed."
output_image = image_pil # Return original image
# Save for debugging before returning
if output_image:
try:
output_image.save("debug_fastsam_everything_output.png")
except Exception as save_err:
print(f"Failed to save debug image: {save_err}")
return output_image, status_message
except Exception as e:
print(f"Error during FastSAM 'everything' processing: {e}")
traceback.print_exc()
return image_pil, f"Error during processing: {e}" # Return original image and error
def run_text_prompted_segmentation(image_pil: Image.Image, text_prompts: str, conf_threshold: float = 0.4, iou_threshold: float = 0.9):
# Input validation
if image_pil is None:
return None, "Error: Please upload an image."
if not isinstance(image_pil, Image.Image):
print(f"FastSAM Text input is not a PIL Image, type: {type(image_pil)}. Attempting conversion.")
if isinstance(image_pil, np.ndarray):
try:
image_pil = Image.fromarray(image_pil)
print("Converted numpy input to PIL Image for FastSAM Text.")
except Exception as e:
print(f"Failed to convert numpy array to PIL Image: {e}")
return None, "Error: Invalid image input format."
else:
return None, "Error: Please provide a valid image."
# Model loading check
if not load_fastsam_model() or not fastsam_lib_imported or FastSAMPrompt is None:
return image_pil, "Error: FastSAM model/library not ready. Check logs."
if not text_prompts:
return image_pil, "Please enter text prompts (e.g., 'person, dog')."
prompts = [p.strip() for p in text_prompts.split(',') if p.strip()]
if not prompts:
return image_pil, "No valid text prompts entered."
print(f"Running FastSAM text-prompted segmentation for: {prompts} with conf={conf_threshold}, iou={iou_threshold}")
output_image = None
status_message = "Processing..."
try:
# Ensure image is RGB
if image_pil.mode != "RGB":
print(f"Converting image from {image_pil.mode} to RGB for FastSAM.")
image_pil_rgb = image_pil.convert("RGB")
else:
image_pil_rgb = image_pil
image_np_rgb = np.array(image_pil_rgb)
print(f"Input image shape for FastSAM Text: {image_np_rgb.shape}")
# Run FastSAM once to get all potential segments
everything_results = fastsam_model(
image_np_rgb, device=DEVICE, retina_masks=True, imgsz=640,
conf=conf_threshold, iou=iou_threshold, verbose=False # Set verbose=False usually
)
if everything_results is None or not isinstance(everything_results, list) or len(everything_results) == 0:
print("FastSAM model returned None or empty results for text prompt base.")
return image_pil, "FastSAM did not return base results needed for text prompting."
# Initialize FastSAMPrompt
if FastSAMPrompt is None:
print("FastSAMPrompt class is not available.")
return image_pil, "Error: FastSAMPrompt class not loaded."
prompt_process = FastSAMPrompt(image_np_rgb, everything_results, device=DEVICE)
all_matching_masks = []
found_prompts_details = []
# Process each text prompt
for text in prompts:
print(f" Processing prompt: '{text}'")
ann = prompt_process.text_prompt(text=text)
current_masks = None
num_found = 0
# Check annotation format - adapt based on text_prompt output structure
if isinstance(ann, list) and len(ann) > 0 and isinstance(ann[0], dict) and 'masks' in ann[0]:
mask_tensor = ann[0]['masks']
if mask_tensor is not None and isinstance(mask_tensor, torch.Tensor) and mask_tensor.numel() > 0:
current_masks = mask_tensor.cpu().numpy()
num_found = len(current_masks)
print(f" Found {num_found} mask(s) for '{text}'. Shape: {current_masks.shape}")
all_matching_masks.extend(current_masks) # Add found masks
else:
print(f" Annotation 'masks' tensor is None, not a Tensor, or empty for '{text}'.")
else:
print(f" No masks found or annotation format unexpected for '{text}'. ann type: {type(ann)}")
if isinstance(ann, list) and len(ann) > 0: print(f" First element of ann for '{text}': {ann[0]}")
found_prompts_details.append(f"{text} ({num_found})")
# Prepare output image
output_image = image_pil.copy()
status_message = f"Results: {', '.join(found_prompts_details)}" if found_prompts_details else "No matches found for any prompt."
# Draw all collected masks if any were found
if all_matching_masks:
print(f"Total masks collected across all prompts: {len(all_matching_masks)}")
overlay = Image.new('RGBA', output_image.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
valid_masks_drawn = 0
for i, mask in enumerate(all_matching_masks):
binary_mask = (mask > 0)
mask_uint8 = binary_mask.astype(np.uint8) * 255
if mask_uint8.max() == 0: continue
color = (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255), 180)
try:
mask_image = Image.fromarray(mask_uint8, mode='L')
draw.bitmap((0, 0), mask_image, fill=color)
valid_masks_drawn += 1
except Exception as draw_err:
print(f"Error drawing collected mask {i}: {draw_err}")
traceback.print_exc()
if valid_masks_drawn > 0:
try:
output_image_rgba = output_image.convert('RGBA')
output_image_composited = Image.alpha_composite(output_image_rgba, overlay)
output_image = output_image_composited.convert('RGB')
print("Text prompt mask drawing and compositing finished.")
# Append drawing status if needed
if valid_masks_drawn < len(all_matching_masks):
status_message += f" (Drew {valid_masks_drawn}/{len(all_matching_masks)} found masks)"
except Exception as comp_err:
print(f"Error during alpha compositing for text prompts: {comp_err}")
traceback.print_exc()
output_image = image_pil # Fallback
status_message += " (Error during visualization)"
else:
output_image = image_pil # Return original if no masks drawn
status_message += " (No valid masks to draw)"
else:
print("No matching masks found for any text prompt.")
output_image = image_pil # Return original image
# Save for debugging
if output_image:
try:
output_image.save("debug_fastsam_text_output.png")
except Exception as save_err:
print(f"Failed to save debug image: {save_err}")
return output_image, status_message
except Exception as e:
print(f"Error during FastSAM text-prompted processing: {e}")
traceback.print_exc()
return image_pil, f"Error during processing: {e}"
# --- Preload Models ---
print("Attempting to preload models...")
load_clip_model()
load_fastsam_model() # Try to load FastSAM eagerly
print("Preloading finished (check logs above for success/errors).")
# --- Gradio Interface Definition ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# CLIP & FastSAM Demo")
gr.Markdown("Explore Zero-Shot Classification, 'Segment Everything', and Text-Prompted Segmentation.")
gr.Markdown("---")
gr.Markdown("**NOTE:** Ensure required libraries are installed: `pip install --upgrade gradio torch transformers Pillow numpy wget ultralytics` and `pip install git+https://github.com/CASIA-IVA-Lab/FastSAM.git`")
gr.Markdown("---")
with gr.Tabs():
# --- CLIP Tab ---
with gr.TabItem("CLIP Zero-Shot Classification"):
gr.Markdown("Upload an image and provide comma-separated labels (e.g., 'cat, dog, car').")
with gr.Row():
with gr.Column(scale=1):
# Define UI elements first
clip_input_image = gr.Image(type="pil", label="Input Image")
clip_text_labels = gr.Textbox(label="Comma-Separated Labels", placeholder="e.g., astronaut, moon")
clip_button = gr.Button("Run CLIP Classification", variant="primary")
with gr.Column(scale=1):
clip_output_label = gr.Label(label="Classification Probabilities")
clip_output_image_display = gr.Image(type="pil", label="Input Image Preview", interactive=False)
# Define the click handler AFTER elements are defined
clip_button.click(
run_clip_zero_shot,
inputs=[clip_input_image, clip_text_labels],
outputs=[clip_output_label, clip_output_image_display]
)
gr.Examples(
examples=[
["examples/astronaut.jpg", "astronaut, moon, rover"],
["examples/dog_bike.jpg", "dog, bicycle, person"],
["examples/clip_logo.png", "logo, text, graphics"],
],
inputs=[clip_input_image, clip_text_labels],
outputs=[clip_output_label, clip_output_image_display],
fn=run_clip_zero_shot,
cache_examples=False, # Keep False during debugging
)
# --- FastSAM Everything Tab ---
with gr.TabItem("FastSAM Segment Everything"):
gr.Markdown("Upload an image to segment all objects/regions.")
with gr.Row():
with gr.Column(scale=1):
# Define UI elements first
fastsam_input_image_all = gr.Image(type="pil", label="Input Image")
with gr.Row():
fastsam_conf_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
fastsam_iou_all = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
fastsam_button_all = gr.Button("Run FastSAM Segmentation", variant="primary")
with gr.Column(scale=1):
fastsam_output_image_all = gr.Image(type="pil", label="Segmented Image", interactive=False)
fastsam_status_all = gr.Textbox(label="Status", interactive=False)
# Define the click handler AFTER elements are defined
fastsam_button_all.click(
run_fastsam_segmentation,
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all], # Correct inputs list
outputs=[fastsam_output_image_all, fastsam_status_all]
)
gr.Examples(
examples=[
["examples/dogs.jpg", 0.4, 0.9],
["examples/fruits.jpg", 0.5, 0.8],
["examples/lion.jpg", 0.45, 0.9],
],
inputs=[fastsam_input_image_all, fastsam_conf_all, fastsam_iou_all],
outputs=[fastsam_output_image_all, fastsam_status_all],
fn=run_fastsam_segmentation,
cache_examples=False,
)
# --- Text-Prompted Segmentation Tab ---
with gr.TabItem("Text-Prompted Segmentation"):
gr.Markdown("Upload an image and provide comma-separated prompts (e.g., 'person, dog').")
with gr.Row():
with gr.Column(scale=1):
# Define UI elements first
prompt_input_image = gr.Image(type="pil", label="Input Image")
prompt_text_input = gr.Textbox(label="Comma-Separated Text Prompts", placeholder="e.g., glasses, watch")
with gr.Row():
prompt_conf = gr.Slider(minimum=0.1, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
prompt_iou = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="IoU Threshold")
prompt_button = gr.Button("Segment by Text", variant="primary")
with gr.Column(scale=1):
prompt_output_image = gr.Image(type="pil", label="Text-Prompted Segmentation", interactive=False)
prompt_status_message = gr.Textbox(label="Status", interactive=False)
# Define the click handler AFTER elements are defined
prompt_button.click(
run_text_prompted_segmentation,
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou], # Correct inputs list
outputs=[prompt_output_image, prompt_status_message]
)
gr.Examples(
examples=[
["examples/dog_bike.jpg", "person, bicycle", 0.4, 0.9],
["examples/astronaut.jpg", "person, helmet", 0.35, 0.9],
["examples/dogs.jpg", "dog", 0.4, 0.9],
["examples/fruits.jpg", "banana, apple", 0.5, 0.8],
["examples/teacher.jpg", "person, glasses", 0.4, 0.9],
],
inputs=[prompt_input_image, prompt_text_input, prompt_conf, prompt_iou],
outputs=[prompt_output_image, prompt_status_message],
fn=run_text_prompted_segmentation,
cache_examples=False,
)
# --- Example File Download ---
# (This logic should be outside the `with gr.Blocks...` block)
if not os.path.exists("examples"):
try:
os.makedirs("examples")
print("Created 'examples' directory.")
except OSError as e:
print(f"Error creating 'examples' directory: {e}")
example_files = {
"astronaut.jpg": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Astronaut_-_St._Jean_Bay.jpg/640px-Astronaut_-_St._Jean_Bay.jpg",
"dog_bike.jpg": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio/outputs_multimodal.jpg",
"clip_logo.png": "https://raw.githubusercontent.com/openai/CLIP/main/CLIP.png",
"dogs.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image8.jpg",
"fruits.jpg": "https://raw.githubusercontent.com/ultralytics/assets/main/im/image9.jpg",
"lion.jpg": "https://huggingface.co/spaces/gradio/image-segmentation/resolve/main/images/lion.jpg",
"teacher.jpg": "https://images.pexels.com/photos/848117/pexels-photo-848117.jpeg?auto=compress&cs=tinysrgb&w=600"
}
def download_example_file(filename, url, retries=3):
filepath = os.path.join("examples", filename)
if not os.path.exists(filepath):
print(f"Attempting to download {filename}...")
for attempt in range(retries):
try:
wget.download(url, filepath)
print(f"Downloaded {filename} successfully.")
return # Exit function on success
except Exception as e:
print(f"Download attempt {attempt + 1}/{retries} for {filename} failed: {e}")
if os.path.exists(filepath): # Clean up partial download
try: os.remove(filepath)
except OSError: pass
if attempt + 1 == retries:
print(f"Failed to download {filename} after {retries} attempts.")
# else: # Optional: uncomment if you want confirmation for existing files
# print(f"Example file {filename} already exists.")
# Trigger downloads if directory exists
if os.path.exists("examples"):
for filename, url in example_files.items():
download_example_file(filename, url)
print("Example file check/download process complete.")
else:
print("Skipping example download because 'examples' directory could not be created.")
# --- Launch App ---
if __name__ == "__main__":
print("-----------------------------------------")
print("Launching Gradio Demo...")
print("Ensure FastSAM model and weights are correctly loaded (check logs above).")
print("If FastSAM fails, check installation: pip install ultralytics && pip install git+https://github.com/CASIA-IVA-Lab/FastSAM.git")
print("-----------------------------------------")
demo.launch(debug=True) # Keep debug=True for detailed Gradio errors |