File size: 8,956 Bytes
378a602 49bffdd 0a1a8aa 49bffdd 585855c 70ae50f 49bffdd 378a602 5e0225e 378a602 5e0225e 378a602 5e0225e 378a602 5e0225e 3af6820 378a602 70ae50f 49bffdd 70ae50f 49bffdd 70ae50f 49bffdd 70ae50f 49bffdd 5e0225e 71b8343 49bffdd 70ae50f 49bffdd 70ae50f 49bffdd 70ae50f 49bffdd 70ae50f 5e0225e 49bffdd 70ae50f 49bffdd 70ae50f 49bffdd 70ae50f 49bffdd 71b8343 49bffdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os
import logging
import json
import base64
from typing import Dict, Any
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Set Hugging Face cache directory to /tmp
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
os.environ["TORCH_HOME"] = "/tmp/torch"
from fastapi import FastAPI, Form, HTTPException
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
from PIL import Image
import io
import numpy as np
from lang_sam import LangSAM
import supervision as sv
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
import torch
import cv2
from dotenv import load_dotenv
import openai
import requests
from io import BytesIO
load_dotenv()
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
app = FastAPI()
# Enable CORS for all origins
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Create cache directories in /tmp
os.makedirs("/tmp/huggingface", exist_ok=True)
os.makedirs("/tmp/torch", exist_ok=True)
# Load the langSAM model
logger.info("Loading LangSAM model...")
langsam_model = LangSAM()
logger.info("LangSAM model loaded successfully")
# Load SAM2 Model
logger.info("Loading SAM2 model...")
sam2_checkpoint = "sam2.1_hiera_small.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_s.yaml"
device = torch.device("cpu")
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
predictor = SAM2ImagePredictor(sam2_model)
logger.info("SAM2 model loaded successfully")
@app.get("/")
async def root():
return {"message": "LangSAM API is running!"}
def create_mask_overlay(image: np.ndarray, mask: np.ndarray, alpha: float = 0.5) -> np.ndarray:
"""Create a mask overlay on the original image."""
# Create a colored mask (blue color)
colored_mask = np.zeros_like(image)
colored_mask[mask > 0] = [30, 144, 255] # Blue color
# Add contour
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(colored_mask, contours, -1, (255, 255, 255), thickness=2)
# Blend with original image
overlay = cv2.addWeighted(image, 1 - alpha, colored_mask, alpha, 0)
return overlay
def create_mask_only(image: np.ndarray, mask: np.ndarray) -> np.ndarray:
"""Create an image showing only the masked region."""
# Create a black background
result = np.zeros_like(image)
# Copy only the masked region
result[mask > 0] = image[mask > 0]
return result
def image_to_base64(image: np.ndarray) -> str:
"""Convert numpy array image to base64 string."""
_, buffer = cv2.imencode('.png', cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
return base64.b64encode(buffer).decode('utf-8')
def draw_image(image_rgb, masks, xyxy, probs, labels):
mask_annotator = sv.MaskAnnotator()
# Create class_id for each unique label
unique_labels = list(set(labels))
class_id_map = {label: idx for idx, label in enumerate(unique_labels)}
class_id = [class_id_map[label] for label in labels]
# Add class_id to the Detections object
detections = sv.Detections(
xyxy=xyxy,
mask=masks.astype(bool),
confidence=probs,
class_id=np.array(class_id),
)
annotated_image = mask_annotator.annotate(scene=image_rgb.copy(), detections=detections)
return annotated_image
def load_image_from_url(url):
"""Fetch image from URL and load it into memory."""
try:
logger.info(f"Fetching image from URL: {url}")
response = requests.get(url)
response.raise_for_status()
return Image.open(BytesIO(response.content))
except Exception as e:
logger.error(f"Error loading image from URL: {str(e)}")
raise HTTPException(status_code=400, detail=f"Error loading image from URL: {str(e)}")
prompt = """You will be provided with a complete product name, which may contain brand names, extra details, and categories. Your task is to extract only the core product name (apparel or accessory) while removing brand names, categories, and unnecessary words and convert it's meaning to a basic clothing or accessory category.
Examples:
Beachwood Luxe Paneled Unitard — Girlfriend Collective → Dress
100 cotton strappy top · Black, White, Red, Peach · T-shirts And Polo Shirts | Massimo Dutti → Shirt
Wide-leg co-ord trousers with pleats · Green · Dressy | Massimo Dutti → Pants
BLANKNYC Wide Leg Jean in Radio Star | REVOLVE → Jeans
Basically, you need to convert the product name to a basic clothing or accessory category like Shirt, Pants, Dress, Jeans, etc.
Now, extract the core product name from the following:
{product_name}"""
@app.post("/openai/chat")
async def chat(product_name: str = Form(...)):
try:
logger.info(f"Processing product name: {product_name}")
completion = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt.format(product_name=product_name)}],
)
result = completion.choices[0].message
logger.info(f"OpenAI response: {result.content}")
return result
except Exception as e:
logger.error(f"Error in OpenAI chat: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error processing product name: {str(e)}")
@app.post("/segment/sam2")
async def segment_image(
image_url: str = Form(...),
x: int = Form(...),
y: int = Form(...)
):
"""Segment image using SAM2 with a single input point."""
try:
logger.info(f"Starting SAM2 segmentation for image URL: {image_url}")
image_pil = load_image_from_url(image_url)
image_array = np.array(image_pil)
logger.info("Setting image in SAM2 predictor")
predictor.set_image(image_array)
input_point = np.array([[x, y]])
input_label = np.array([1]) # Foreground point
logger.info("Running SAM2 prediction")
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=True,
)
# Get top mask
top_mask = masks[np.argmax(scores)]
# Create different versions of the result
overlay_image = create_mask_overlay(image_array, top_mask)
mask_only_image = create_mask_only(image_array, top_mask)
# Convert images to base64
original_b64 = image_to_base64(image_array)
overlay_b64 = image_to_base64(overlay_image)
mask_only_b64 = image_to_base64(mask_only_image)
# Create response
response = {
"original": original_b64,
"overlay": overlay_b64,
"mask_only": mask_only_b64,
"score": float(scores[np.argmax(scores)])
}
logger.info("SAM2 segmentation completed successfully")
return response
except Exception as e:
logger.error(f"Error in SAM2 segmentation: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error in SAM2 segmentation: {str(e)}")
@app.post("/segment/langsam")
async def segment_image(image_url: str = Form(...), text_prompt: str = Form(...)):
try:
logger.info(f"Starting LangSAM segmentation for image URL: {image_url} with prompt: {text_prompt}")
image_pil = load_image_from_url(image_url)
image_array = np.array(image_pil)
# Run segmentation
logger.info("Running LangSAM prediction")
results = langsam_model.predict([image_pil], [text_prompt])
# Get the first (best) mask
mask = results[0]["masks"][0]
# Create different versions of the result
overlay_image = create_mask_overlay(image_array, mask)
mask_only_image = create_mask_only(image_array, mask)
# Convert images to base64
original_b64 = image_to_base64(image_array)
overlay_b64 = image_to_base64(overlay_image)
mask_only_b64 = image_to_base64(mask_only_image)
# Create response
response = {
"original": original_b64,
"overlay": overlay_b64,
"mask_only": mask_only_b64,
"boxes": results[0]["boxes"].tolist(),
"scores": results[0]["scores"].tolist(),
"labels": results[0]["labels"]
}
logger.info("LangSAM segmentation completed successfully")
return response
except Exception as e:
logger.error(f"Error in LangSAM segmentation: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error in LangSAM segmentation: {str(e)}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |