sashtech's picture
Update app.py
94cbde8 verified
raw
history blame
9.02 kB
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet, stopwords # Import stopwords here
from spellchecker import SpellChecker
import re
import random
import string
# Ensure necessary NLTK data is downloaded
def download_nltk_resources():
try:
nltk.download('punkt') # Tokenizer for English text
nltk.download('stopwords') # Stop words
nltk.download('averaged_perceptron_tagger') # POS tagger
nltk.download('wordnet') # WordNet
nltk.download('omw-1.4') # Open Multilingual Wordnet
except Exception as e:
print(f"Error downloading NLTK resources: {e}")
# Call the download function
download_nltk_resources()
top_words = set(stopwords.words("english")) # More efficient as a set
def plagiarism_removal(text):
def plagiarism_remover(word):
# Handle stopwords, punctuation, and excluded words
if word.lower() in top_words or word.lower() in exclude_words or word in string.punctuation:
return word
# Find synonyms
synonyms = set()
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
# Exclude overly technical synonyms or words with underscores
if "_" not in lemma.name() and lemma.name().isalpha() and lemma.name().lower() != word.lower():
synonyms.add(lemma.name())
# Get part of speech for word and filter synonyms with the same POS
pos_tag_word = nltk.pos_tag([word])[0]
# Avoid replacing certain parts of speech
if pos_tag_word[1] in exclude_tags:
return word
filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]]
# Return original word if no appropriate synonyms found
if not filtered_synonyms:
return word
# Select a random synonym from the filtered list
synonym_choice = random.choice(filtered_synonyms)
# Retain original capitalization
if word.istitle():
return synonym_choice.title()
return synonym_choice
# Tokenize, replace words, and join them back
para_split = nltk.word_tokenize(text)
final_text = [plagiarism_remover(word) for word in para_split]
# Handle spacing around punctuation correctly
corrected_text = []
for i in range(len(final_text)):
if final_text[i] in string.punctuation and i > 0:
corrected_text[-1] += final_text[i] # Append punctuation to previous word
else:
corrected_text.append(final_text[i])
return " ".join(corrected_text)
# Words we don't want to replace
exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'}
exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'}
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Initialize the spell checker
spell = SpellChecker()
# Ensure the SpaCy model is installed
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Function to remove redundant and meaningless words
def remove_redundant_words(text):
doc = nlp(text)
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
return ' '.join(filtered_text)
# Function to fix spacing before punctuation
def fix_punctuation_spacing(text):
# Split the text into words and punctuation
words = text.split(' ')
cleaned_words = []
punctuation_marks = {',', '.', "'", '!', '?', ':'}
for word in words:
if cleaned_words and word and word[0] in punctuation_marks:
cleaned_words[-1] += word
else:
cleaned_words.append(word)
return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \
.replace(' !', '!').replace(' ?', '?').replace(' :', ':')
# Function to fix possessives like "Earth's"
def fix_possessives(text):
text = re.sub(r'(\w)\s\'\s?s', r"\1's", text)
return text
# Function to capitalize the first letter of sentences and proper nouns
def capitalize_sentences_and_nouns(text):
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start:
sentence.append(token.text.capitalize())
elif token.pos_ == "PROPN":
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return ' '.join(corrected_text)
# Function to force capitalization of the first letter of every sentence and ensure full stops
def force_first_letter_capital(text):
sentences = re.split(r'(?<=\w[.!?])\s+', text)
capitalized_sentences = []
for sentence in sentences:
if sentence:
capitalized_sentence = sentence[0].capitalize() + sentence[1:]
if not re.search(r'[.!?]$', capitalized_sentence):
capitalized_sentence += '.'
capitalized_sentences.append(capitalized_sentence)
return " ".join(capitalized_sentences)
# Function to correct tense errors in a sentence
def correct_tense_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
corrected_text.append(lemma)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to check and correct article errors
def correct_article_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.text in ['a', 'an']:
next_token = token.nbor(1)
if token.text == "a" and next_token.text[0].lower() in "aeiou":
corrected_text.append("an")
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
corrected_text.append("a")
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to ensure subject-verb agreement
def ensure_subject_verb_agreement(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
if token.tag_ == "NN" and token.head.tag_ != "VBZ":
corrected_text.append(token.head.lemma_ + "s")
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":
corrected_text.append(token.head.lemma_)
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to correct spelling errors
def correct_spelling(text):
words = text.split()
corrected_words = []
for word in words:
corrected_word = spell.correction(word)
corrected_words.append(corrected_word)
return ' '.join(corrected_words)
# Main processing function for paraphrasing and grammar correction
def paraphrase_and_correct(text):
cleaned_text = remove_redundant_words(text)
cleaned_text = fix_punctuation_spacing(cleaned_text)
cleaned_text = fix_possessives(cleaned_text)
cleaned_text = capitalize_sentences_and_nouns(cleaned_text)
cleaned_text = force_first_letter_capital(cleaned_text)
cleaned_text = correct_tense_errors(cleaned_text)
cleaned_text = correct_article_errors(cleaned_text)
cleaned_text = ensure_subject_verb_agreement(cleaned_text)
cleaned_text = correct_spelling(cleaned_text)
plag_removed = plagiarism_removal(cleaned_text)
return plag_removed
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# AI Text Processor")
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Input Text')
output1 = gr.Label()
button1 = gr.Button("πŸš€ Process!")
button1.click(fn=predict_en, inputs=t1, outputs=output1)
with gr.Tab("Paraphrasing and Grammar Correction"):
t2 = gr.Textbox(lines=5, label='Input Text')
button2 = gr.Button("πŸš€ Process!")
output2 = gr.Textbox(lines=5, label='Processed Text')
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=output2)
demo.launch()