Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from transformers import pipeline | |
import spacy | |
import subprocess | |
import nltk | |
from nltk.corpus import wordnet, stopwords # Import stopwords here | |
from spellchecker import SpellChecker | |
import re | |
import random | |
import string | |
# Ensure necessary NLTK data is downloaded | |
def download_nltk_resources(): | |
try: | |
nltk.download('punkt') # Tokenizer for English text | |
nltk.download('stopwords') # Stop words | |
nltk.download('averaged_perceptron_tagger') # POS tagger | |
nltk.download('wordnet') # WordNet | |
nltk.download('omw-1.4') # Open Multilingual Wordnet | |
except Exception as e: | |
print(f"Error downloading NLTK resources: {e}") | |
# Call the download function | |
download_nltk_resources() | |
top_words = set(stopwords.words("english")) # More efficient as a set | |
def plagiarism_removal(text): | |
def plagiarism_remover(word): | |
# Handle stopwords, punctuation, and excluded words | |
if word.lower() in top_words or word.lower() in exclude_words or word in string.punctuation: | |
return word | |
# Find synonyms | |
synonyms = set() | |
for syn in wordnet.synsets(word): | |
for lemma in syn.lemmas(): | |
# Exclude overly technical synonyms or words with underscores | |
if "_" not in lemma.name() and lemma.name().isalpha() and lemma.name().lower() != word.lower(): | |
synonyms.add(lemma.name()) | |
# Get part of speech for word and filter synonyms with the same POS | |
pos_tag_word = nltk.pos_tag([word])[0] | |
# Avoid replacing certain parts of speech | |
if pos_tag_word[1] in exclude_tags: | |
return word | |
filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]] | |
# Return original word if no appropriate synonyms found | |
if not filtered_synonyms: | |
return word | |
# Select a random synonym from the filtered list | |
synonym_choice = random.choice(filtered_synonyms) | |
# Retain original capitalization | |
if word.istitle(): | |
return synonym_choice.title() | |
return synonym_choice | |
# Tokenize, replace words, and join them back | |
para_split = nltk.word_tokenize(text) | |
final_text = [plagiarism_remover(word) for word in para_split] | |
# Handle spacing around punctuation correctly | |
corrected_text = [] | |
for i in range(len(final_text)): | |
if final_text[i] in string.punctuation and i > 0: | |
corrected_text[-1] += final_text[i] # Append punctuation to previous word | |
else: | |
corrected_text.append(final_text[i]) | |
return " ".join(corrected_text) | |
# Words we don't want to replace | |
exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'} | |
exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'} | |
# Initialize the English text classification pipeline for AI detection | |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") | |
# Initialize the spell checker | |
spell = SpellChecker() | |
# Ensure the SpaCy model is installed | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
nlp = spacy.load("en_core_web_sm") | |
# Function to predict the label and score for English text (AI Detection) | |
def predict_en(text): | |
res = pipeline_en(text)[0] | |
return res['label'], res['score'] | |
# Function to remove redundant and meaningless words | |
def remove_redundant_words(text): | |
doc = nlp(text) | |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"} | |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words] | |
return ' '.join(filtered_text) | |
# Function to fix spacing before punctuation | |
def fix_punctuation_spacing(text): | |
# Split the text into words and punctuation | |
words = text.split(' ') | |
cleaned_words = [] | |
punctuation_marks = {',', '.', "'", '!', '?', ':'} | |
for word in words: | |
if cleaned_words and word and word[0] in punctuation_marks: | |
cleaned_words[-1] += word | |
else: | |
cleaned_words.append(word) | |
return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \ | |
.replace(' !', '!').replace(' ?', '?').replace(' :', ':') | |
# Function to fix possessives like "Earth's" | |
def fix_possessives(text): | |
text = re.sub(r'(\w)\s\'\s?s', r"\1's", text) | |
return text | |
# Function to capitalize the first letter of sentences and proper nouns | |
def capitalize_sentences_and_nouns(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for sent in doc.sents: | |
sentence = [] | |
for token in sent: | |
if token.i == sent.start: | |
sentence.append(token.text.capitalize()) | |
elif token.pos_ == "PROPN": | |
sentence.append(token.text.capitalize()) | |
else: | |
sentence.append(token.text) | |
corrected_text.append(' '.join(sentence)) | |
return ' '.join(corrected_text) | |
# Function to force capitalization of the first letter of every sentence and ensure full stops | |
def force_first_letter_capital(text): | |
sentences = re.split(r'(?<=\w[.!?])\s+', text) | |
capitalized_sentences = [] | |
for sentence in sentences: | |
if sentence: | |
capitalized_sentence = sentence[0].capitalize() + sentence[1:] | |
if not re.search(r'[.!?]$', capitalized_sentence): | |
capitalized_sentence += '.' | |
capitalized_sentences.append(capitalized_sentence) | |
return " ".join(capitalized_sentences) | |
# Function to correct tense errors in a sentence | |
def correct_tense_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}: | |
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text | |
corrected_text.append(lemma) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to check and correct article errors | |
def correct_article_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.text in ['a', 'an']: | |
next_token = token.nbor(1) | |
if token.text == "a" and next_token.text[0].lower() in "aeiou": | |
corrected_text.append("an") | |
elif token.text == "an" and next_token.text[0].lower() not in "aeiou": | |
corrected_text.append("a") | |
else: | |
corrected_text.append(token.text) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to ensure subject-verb agreement | |
def ensure_subject_verb_agreement(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.dep_ == "nsubj" and token.head.pos_ == "VERB": | |
if token.tag_ == "NN" and token.head.tag_ != "VBZ": | |
corrected_text.append(token.head.lemma_ + "s") | |
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": | |
corrected_text.append(token.head.lemma_) | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to correct spelling errors | |
def correct_spelling(text): | |
words = text.split() | |
corrected_words = [] | |
for word in words: | |
corrected_word = spell.correction(word) | |
corrected_words.append(corrected_word) | |
return ' '.join(corrected_words) | |
# Main processing function for paraphrasing and grammar correction | |
def paraphrase_and_correct(text): | |
cleaned_text = remove_redundant_words(text) | |
cleaned_text = fix_punctuation_spacing(cleaned_text) | |
cleaned_text = fix_possessives(cleaned_text) | |
cleaned_text = capitalize_sentences_and_nouns(cleaned_text) | |
cleaned_text = force_first_letter_capital(cleaned_text) | |
cleaned_text = correct_tense_errors(cleaned_text) | |
cleaned_text = correct_article_errors(cleaned_text) | |
cleaned_text = ensure_subject_verb_agreement(cleaned_text) | |
cleaned_text = correct_spelling(cleaned_text) | |
plag_removed = plagiarism_removal(cleaned_text) | |
return plag_removed | |
# Create the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# AI Text Processor") | |
with gr.Tab("AI Detection"): | |
t1 = gr.Textbox(lines=5, label='Input Text') | |
output1 = gr.Label() | |
button1 = gr.Button("π Process!") | |
button1.click(fn=predict_en, inputs=t1, outputs=output1) | |
with gr.Tab("Paraphrasing and Grammar Correction"): | |
t2 = gr.Textbox(lines=5, label='Input Text') | |
button2 = gr.Button("π Process!") | |
output2 = gr.Textbox(lines=5, label='Processed Text') | |
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=output2) | |
demo.launch() | |