File size: 9,019 Bytes
cfaf614
2fc5fd9
cfaf614
 
 
 
94cbde8
cfaf614
dd84c16
bba85cd
94cbde8
cfaf614
94cbde8
 
 
 
 
 
 
 
 
 
2174db5
94cbde8
 
1b8746e
94cbde8
051de31
 
 
 
94cbde8
051de31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94cbde8
051de31
 
 
 
 
 
 
 
 
 
 
 
94cbde8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfaf614
 
 
 
 
 
 
 
 
 
 
 
dd84c16
cfaf614
d89cee9
 
 
 
 
 
 
a69899f
d89cee9
a69899f
d89cee9
 
 
dd84c16
 
 
 
cfaf614
 
dd84c16
cfaf614
 
 
 
 
 
 
a69899f
cfaf614
a69899f
cfaf614
 
 
 
 
 
 
92857f5
dd84c16
a69899f
9b2901c
92857f5
9b2901c
92857f5
 
 
 
 
 
 
cfaf614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a69899f
cfaf614
a69899f
cfaf614
 
 
 
 
 
 
 
 
 
94cbde8
cfaf614
 
94cbde8
cfaf614
4527fa4
94cbde8
 
 
 
 
 
 
 
bba85cd
94cbde8
 
 
cfaf614
94cbde8
cfaf614
94cbde8
 
 
 
cfaf614
94cbde8
 
 
 
cfaf614
94cbde8
cfaf614
94cbde8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet, stopwords  # Import stopwords here
from spellchecker import SpellChecker
import re
import random
import string

# Ensure necessary NLTK data is downloaded
def download_nltk_resources():
    try:
        nltk.download('punkt')  # Tokenizer for English text
        nltk.download('stopwords')  # Stop words
        nltk.download('averaged_perceptron_tagger')  # POS tagger
        nltk.download('wordnet')  # WordNet
        nltk.download('omw-1.4')  # Open Multilingual Wordnet
    except Exception as e:
        print(f"Error downloading NLTK resources: {e}")

# Call the download function
download_nltk_resources()

top_words = set(stopwords.words("english"))  # More efficient as a set

def plagiarism_removal(text):
    def plagiarism_remover(word):
        # Handle stopwords, punctuation, and excluded words
        if word.lower() in top_words or word.lower() in exclude_words or word in string.punctuation:
            return word
        
        # Find synonyms
        synonyms = set()
        for syn in wordnet.synsets(word):
            for lemma in syn.lemmas():
                # Exclude overly technical synonyms or words with underscores
                if "_" not in lemma.name() and lemma.name().isalpha() and lemma.name().lower() != word.lower():
                    synonyms.add(lemma.name())

        # Get part of speech for word and filter synonyms with the same POS
        pos_tag_word = nltk.pos_tag([word])[0]
        
        # Avoid replacing certain parts of speech
        if pos_tag_word[1] in exclude_tags:
            return word
        
        filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]]

        # Return original word if no appropriate synonyms found
        if not filtered_synonyms:
            return word

        # Select a random synonym from the filtered list
        synonym_choice = random.choice(filtered_synonyms)

        # Retain original capitalization
        if word.istitle():
            return synonym_choice.title()
        return synonym_choice

    # Tokenize, replace words, and join them back
    para_split = nltk.word_tokenize(text)
    final_text = [plagiarism_remover(word) for word in para_split]
    
    # Handle spacing around punctuation correctly
    corrected_text = []
    for i in range(len(final_text)):
        if final_text[i] in string.punctuation and i > 0:
            corrected_text[-1] += final_text[i]  # Append punctuation to previous word
        else:
            corrected_text.append(final_text[i])

    return " ".join(corrected_text)

# Words we don't want to replace
exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'}
exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'}

# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")

# Initialize the spell checker
spell = SpellChecker()

# Ensure the SpaCy model is installed
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
    res = pipeline_en(text)[0]
    return res['label'], res['score']

# Function to remove redundant and meaningless words
def remove_redundant_words(text):
    doc = nlp(text)
    meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
    filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
    return ' '.join(filtered_text)

# Function to fix spacing before punctuation
def fix_punctuation_spacing(text):
    # Split the text into words and punctuation
    words = text.split(' ')
    cleaned_words = []
    punctuation_marks = {',', '.', "'", '!', '?', ':'}

    for word in words:
        if cleaned_words and word and word[0] in punctuation_marks:
            cleaned_words[-1] += word
        else:
            cleaned_words.append(word)

    return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \
                                    .replace(' !', '!').replace(' ?', '?').replace(' :', ':')

# Function to fix possessives like "Earth's"
def fix_possessives(text):
    text = re.sub(r'(\w)\s\'\s?s', r"\1's", text)
    return text

# Function to capitalize the first letter of sentences and proper nouns
def capitalize_sentences_and_nouns(text):
    doc = nlp(text)
    corrected_text = []

    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start:
                sentence.append(token.text.capitalize())
            elif token.pos_ == "PROPN":
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text)
        corrected_text.append(' '.join(sentence))

    return ' '.join(corrected_text)

# Function to force capitalization of the first letter of every sentence and ensure full stops
def force_first_letter_capital(text):
    sentences = re.split(r'(?<=\w[.!?])\s+', text)
    capitalized_sentences = []
    
    for sentence in sentences:
        if sentence:
            capitalized_sentence = sentence[0].capitalize() + sentence[1:]
            if not re.search(r'[.!?]$', capitalized_sentence):
                capitalized_sentence += '.'
            capitalized_sentences.append(capitalized_sentence)
    
    return " ".join(capitalized_sentences)

# Function to correct tense errors in a sentence
def correct_tense_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
            lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
            corrected_text.append(lemma)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to check and correct article errors
def correct_article_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.text in ['a', 'an']:
            next_token = token.nbor(1)
            if token.text == "a" and next_token.text[0].lower() in "aeiou":
                corrected_text.append("an")
            elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
                corrected_text.append("a")
            else:
                corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to ensure subject-verb agreement
def ensure_subject_verb_agreement(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
            if token.tag_ == "NN" and token.head.tag_ != "VBZ":
                corrected_text.append(token.head.lemma_ + "s")
            elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":
                corrected_text.append(token.head.lemma_)
        corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to correct spelling errors
def correct_spelling(text):
    words = text.split()
    corrected_words = []
    for word in words:
        corrected_word = spell.correction(word)
        corrected_words.append(corrected_word)
    return ' '.join(corrected_words)

# Main processing function for paraphrasing and grammar correction
def paraphrase_and_correct(text):
    cleaned_text = remove_redundant_words(text)
    cleaned_text = fix_punctuation_spacing(cleaned_text)
    cleaned_text = fix_possessives(cleaned_text)
    cleaned_text = capitalize_sentences_and_nouns(cleaned_text)
    cleaned_text = force_first_letter_capital(cleaned_text)
    cleaned_text = correct_tense_errors(cleaned_text)
    cleaned_text = correct_article_errors(cleaned_text)
    cleaned_text = ensure_subject_verb_agreement(cleaned_text)
    cleaned_text = correct_spelling(cleaned_text)
    plag_removed = plagiarism_removal(cleaned_text)
    return plag_removed

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# AI Text Processor")
    with gr.Tab("AI Detection"):
        t1 = gr.Textbox(lines=5, label='Input Text')
        output1 = gr.Label()
        button1 = gr.Button("πŸš€ Process!")
        button1.click(fn=predict_en, inputs=t1, outputs=output1)

    with gr.Tab("Paraphrasing and Grammar Correction"):
        t2 = gr.Textbox(lines=5, label='Input Text')
        button2 = gr.Button("πŸš€ Process!")
        output2 = gr.Textbox(lines=5, label='Processed Text')

        button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=output2)

demo.launch()