Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import spacy | |
import subprocess | |
import nltk | |
from nltk.corpus import wordnet | |
from spellchecker import SpellChecker | |
from ginger import get_ginger_result # Importing the grammar correction function | |
# Initialize the English text classification pipeline for AI detection | |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") | |
# Initialize the spell checker | |
spell = SpellChecker() | |
# Ensure necessary NLTK data is downloaded | |
nltk.download('wordnet') | |
nltk.download('omw-1.4') | |
# Ensure the SpaCy model is installed | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
nlp = spacy.load("en_core_web_sm") | |
# Function to predict the label and score for English text (AI Detection) | |
def predict_en(text): | |
res = pipeline_en(text)[0] | |
return res['label'], res['score'] | |
# Function to get synonyms using NLTK WordNet | |
def get_synonyms_nltk(word, pos): | |
synsets = wordnet.synsets(word, pos=pos) | |
if synsets: | |
lemmas = synsets[0].lemmas() | |
return [lemma.name() for lemma in lemmas] | |
return [] | |
# Function to remove redundant and meaningless words | |
def remove_redundant_words(text): | |
doc = nlp(text) | |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"} | |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words] | |
return ' '.join(filtered_text) | |
# Function to capitalize the first letter of sentences and proper nouns | |
def capitalize_sentences_and_nouns(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for sent in doc.sents: | |
sentence = [] | |
for token in sent: | |
if token.i == sent.start: # First word of the sentence | |
sentence.append(token.text.capitalize()) | |
elif token.pos_ == "PROPN": # Proper noun | |
sentence.append(token.text.capitalize()) | |
else: | |
sentence.append(token.text) | |
corrected_text.append(' '.join(sentence)) | |
return ' '.join(corrected_text) | |
# Function to force capitalization of the first letter of every sentence | |
def force_first_letter_capital(text): | |
sentences = text.split(". ") # Split by period to get each sentence | |
capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences] | |
return ". ".join(capitalized_sentences) | |
# Function to correct tense errors in a sentence | |
def correct_tense_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}: | |
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text | |
corrected_text.append(lemma) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to correct singular/plural errors | |
def correct_singular_plural_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.pos_ == "NOUN": | |
if token.tag_ == "NN": # Singular noun | |
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children): | |
corrected_text.append(token.lemma_ + 's') | |
else: | |
corrected_text.append(token.text) | |
elif token.tag_ == "NNS": # Plural noun | |
if any(child.text.lower() in ['a', 'one'] for child in token.head.children): | |
corrected_text.append(token.lemma_) | |
else: | |
corrected_text.append(token.text) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to check and correct article errors | |
def correct_article_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.text in ['a', 'an']: | |
next_token = token.nbor(1) | |
if token.text == "a" and next_token.text[0].lower() in "aeiou": | |
corrected_text.append("an") | |
elif token.text == "an" and next_token.text[0].lower() not in "aeiou": | |
corrected_text.append("a") | |
else: | |
corrected_text.append(token.text) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to get the correct synonym while maintaining verb form | |
def replace_with_synonym(token): | |
pos = None | |
if token.pos_ == "VERB": | |
pos = wordnet.VERB | |
elif token.pos_ == "NOUN": | |
pos = wordnet.NOUN | |
elif token.pos_ == "ADJ": | |
pos = wordnet.ADJ | |
elif token.pos_ == "ADV": | |
pos = wordnet.ADV | |
synonyms = get_synonyms_nltk(token.text, pos) | |
if synonyms: | |
return synonyms[0] | |
return token.text | |
# Function to use Ginger API for grammar correction (NEW) | |
def correct_grammar_with_ginger(text): | |
result = get_ginger_result(text) | |
corrected_text = text | |
for suggestion in result["LightGingerTheTextResult"]: | |
if suggestion["Suggestions"]: | |
from_index = suggestion["From"] | |
to_index = suggestion["To"] + 1 | |
suggested_text = suggestion["Suggestions"][0]["Text"] | |
corrected_text = corrected_text[:from_index] + suggested_text + corrected_text[to_index:] | |
return corrected_text | |
# Gradio interface | |
def process_text(text): | |
text = correct_article_errors(text) | |
text = correct_singular_plural_errors(text) | |
text = correct_tense_errors(text) | |
text = capitalize_sentences_and_nouns(text) | |
text = remove_redundant_words(text) | |
text = correct_grammar_with_ginger(text) # Add grammar correction using Ginger here | |
return text | |
iface = gr.Interface(fn=process_text, inputs="text", outputs="text") | |
iface.launch() | |