Spaces:
Running
Running
File size: 10,109 Bytes
4fe52ab b7577da 7feda08 90fff6b 7fc55d1 9ea0d50 236bb4b 90fff6b 9ea0d50 7fc55d1 51568dc 6ba2176 9ea0d50 6ba2176 fbc26ed 6ba2176 7feda08 59b2b8e 4fe52ab 59b2b8e 4fe52ab e0913e2 4fe52ab e0913e2 4fe52ab e0913e2 4fe52ab e0913e2 4fe52ab e0913e2 4fe52ab e0913e2 4fe52ab e0913e2 4fe52ab e0913e2 4fe52ab e0913e2 4fe52ab e0913e2 4fe52ab e0913e2 4fe52ab e0913e2 4fe52ab e0913e2 4fe52ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from spellchecker import SpellChecker
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Initialize the spell checker
spell = SpellChecker()
# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Function to get synonyms using NLTK WordNet
def get_synonyms_nltk(word, pos):
synsets = wordnet.synsets(word, pos=pos)
if synsets:
lemmas = synsets[0].lemmas()
return [lemma.name() for lemma in lemmas]
return []
# Function to remove redundant and meaningless words
def remove_redundant_words(text):
doc = nlp(text)
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
return ' '.join(filtered_text)
# Function to capitalize the first letter of sentences and proper nouns
def capitalize_sentences_and_nouns(text):
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start: # First word of the sentence
sentence.append(token.text.capitalize())
elif token.pos_ == "PROPN": # Proper noun
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return '\n'.join(corrected_text) # Preserve paragraphs by joining sentences with newline
# Function to force capitalization of the first letter of every sentence
def force_first_letter_capital(text):
sentences = text.split(". ") # Split by period to get each sentence
capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
return ". ".join(capitalized_sentences)
# Function to correct tense errors in a sentence
def correct_tense_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
corrected_text.append(lemma)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to correct singular/plural errors
def correct_singular_plural_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "NOUN":
if token.tag_ == "NN": # Singular noun
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
corrected_text.append(token.lemma_ + 's')
else:
corrected_text.append(token.text)
elif token.tag_ == "NNS": # Plural noun
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
corrected_text.append(token.lemma_)
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to check and correct article errors
def correct_article_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.text in ['a', 'an']:
next_token = token.nbor(1)
if token.text == "a" and next_token.text[0].lower() in "aeiou":
corrected_text.append("an")
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
corrected_text.append("a")
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to get the correct synonym while maintaining verb form
def replace_with_synonym(token):
pos = None
if token.pos_ == "VERB":
pos = wordnet.VERB
elif token.pos_ == "NOUN":
pos = wordnet.NOUN
elif token.pos_ == "ADJ":
pos = wordnet.ADJ
elif token.pos_ == "ADV":
pos = wordnet.ADV
synonyms = get_synonyms_nltk(token.lemma_, pos)
if synonyms:
synonym = synonyms[0]
if token.tag_ == "VBG": # Present participle (e.g., running)
synonym = synonym + 'ing'
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
synonym = synonym + 'ed'
elif token.tag_ == "VBZ": # Third-person singular present
synonym = synonym + 's'
return synonym
return token.text
# Function to check for and avoid double negatives
def correct_double_negatives(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children):
corrected_text.append("always")
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to ensure subject-verb agreement
def ensure_subject_verb_agreement(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
if token.tag_ == "NN" and token.head.tag_ != "VBZ": # Singular noun, should use singular verb
corrected_text.append(token.head.lemma_ + "s")
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": # Plural noun, should not use singular verb
corrected_text.append(token.head.lemma_)
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to correct spelling errors
def correct_spelling(text):
words = text.split()
corrected_words = []
for word in words:
corrected_word = spell.correction(word)
corrected_words.append(corrected_word)
return ' '.join(corrected_words)
# Function to rephrase text and replace words with their synonyms while maintaining form
def rephrase_with_synonyms(text):
doc = nlp(text)
rephrased_text = []
for token in doc:
pos_tag = None
if token.pos_ == "NOUN":
pos_tag = wordnet.NOUN
elif token.pos_ == "VERB":
pos_tag = wordnet.VERB
elif token.pos_ == "ADJ":
pos_tag = wordnet.ADJ
elif token.pos_ == "ADV":
pos_tag = wordnet.ADV
if pos_tag:
synonyms = get_synonyms_nltk(token.text, pos_tag)
if synonyms:
synonym = synonyms[0] # Just using the first synonym for simplicity
if token.pos_ == "VERB":
if token.tag_ == "VBG": # Present participle (e.g., running)
synonym = synonym + 'ing'
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
synonym = synonym + 'ed'
elif token.tag_ == "VBZ": # Third-person singular present
synonym = synonym + 's'
elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
synonym += 's' if not synonym.endswith('s') else ""
rephrased_text.append(synonym)
else:
rephrased_text.append(token.text)
else:
rephrased_text.append(token.text)
return ' '.join(rephrased_text)
# Function to paraphrase and correct grammar with enhanced accuracy
def paraphrase_and_correct(text):
# Remove meaningless or redundant words first
cleaned_text = remove_redundant_words(text)
# Capitalize sentences and nouns
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
# Ensure first letter of each sentence is capitalized
paraphrased_text = force_first_letter_capital(paraphrased_text)
# Apply grammatical corrections
paraphrased_text = correct_article_errors(paraphrased_text)
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
paraphrased_text = correct_tense_errors(paraphrased_text)
paraphrased_text = correct_double_negatives(paraphrased_text)
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
# Rephrase with synonyms while maintaining grammatical forms
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
# Correct spelling errors
paraphrased_text = correct_spelling(paraphrased_text)
return paraphrased_text
# Gradio app setup with two tabs
with gr.Blocks() as demo:
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Text')
button1 = gr.Button("🤖 Predict!")
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
score1 = gr.Textbox(lines=1, label='Prob')
# Connect the prediction function to the button
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
with gr.Tab("Paraphrasing & Grammar Correction"):
t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
button2 = gr.Button("🔄 Paraphrase and Correct")
result2 = gr.Textbox(lines=10, label='Corrected Text', placeholder="The corrected text will appear here...")
# Connect the paraphrasing and correction function to the button
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
demo.launch(share=True) # Share=True to create a public link
|