File size: 10,109 Bytes
4fe52ab
 
b7577da
7feda08
90fff6b
7fc55d1
 
9ea0d50
236bb4b
90fff6b
 
 
9ea0d50
 
 
 
7fc55d1
51568dc
6ba2176
9ea0d50
6ba2176
 
 
fbc26ed
6ba2176
7feda08
59b2b8e
4fe52ab
59b2b8e
4fe52ab
e0913e2
 
4fe52ab
 
e0913e2
 
 
 
 
4fe52ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0913e2
4fe52ab
e0913e2
 
 
 
 
 
 
 
4fe52ab
e0913e2
 
 
 
 
 
4fe52ab
e0913e2
4fe52ab
e0913e2
4fe52ab
e0913e2
4fe52ab
e0913e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fe52ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0913e2
4fe52ab
 
e0913e2
4fe52ab
 
 
 
e0913e2
4fe52ab
 
e0913e2
4fe52ab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from spellchecker import SpellChecker

# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")

# Initialize the spell checker
spell = SpellChecker()

# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')

# Ensure the SpaCy model is installed
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
    res = pipeline_en(text)[0]
    return res['label'], res['score']

# Function to get synonyms using NLTK WordNet
def get_synonyms_nltk(word, pos):
    synsets = wordnet.synsets(word, pos=pos)
    if synsets:
        lemmas = synsets[0].lemmas()
        return [lemma.name() for lemma in lemmas]
    return []

# Function to remove redundant and meaningless words
def remove_redundant_words(text):
    doc = nlp(text)
    meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
    filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
    return ' '.join(filtered_text)

# Function to capitalize the first letter of sentences and proper nouns
def capitalize_sentences_and_nouns(text):
    doc = nlp(text)
    corrected_text = []

    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start:  # First word of the sentence
                sentence.append(token.text.capitalize())
            elif token.pos_ == "PROPN":  # Proper noun
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text)
        corrected_text.append(' '.join(sentence))

    return '\n'.join(corrected_text)  # Preserve paragraphs by joining sentences with newline

# Function to force capitalization of the first letter of every sentence
def force_first_letter_capital(text):
    sentences = text.split(". ")  # Split by period to get each sentence
    capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
    return ". ".join(capitalized_sentences)

# Function to correct tense errors in a sentence
def correct_tense_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
            lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
            corrected_text.append(lemma)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to correct singular/plural errors
def correct_singular_plural_errors(text):
    doc = nlp(text)
    corrected_text = []
    
    for token in doc:
        if token.pos_ == "NOUN":
            if token.tag_ == "NN":  # Singular noun
                if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
                    corrected_text.append(token.lemma_ + 's')
                else:
                    corrected_text.append(token.text)
            elif token.tag_ == "NNS":  # Plural noun
                if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
                    corrected_text.append(token.lemma_)
                else:
                    corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    
    return ' '.join(corrected_text)

# Function to check and correct article errors
def correct_article_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.text in ['a', 'an']:
            next_token = token.nbor(1)
            if token.text == "a" and next_token.text[0].lower() in "aeiou":
                corrected_text.append("an")
            elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
                corrected_text.append("a")
            else:
                corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to get the correct synonym while maintaining verb form
def replace_with_synonym(token):
    pos = None
    if token.pos_ == "VERB":
        pos = wordnet.VERB
    elif token.pos_ == "NOUN":
        pos = wordnet.NOUN
    elif token.pos_ == "ADJ":
        pos = wordnet.ADJ
    elif token.pos_ == "ADV":
        pos = wordnet.ADV
    
    synonyms = get_synonyms_nltk(token.lemma_, pos)
    
    if synonyms:
        synonym = synonyms[0]
        if token.tag_ == "VBG":  # Present participle (e.g., running)
            synonym = synonym + 'ing'
        elif token.tag_ == "VBD" or token.tag_ == "VBN":  # Past tense or past participle
            synonym = synonym + 'ed'
        elif token.tag_ == "VBZ":  # Third-person singular present
            synonym = synonym + 's'
        return synonym
    return token.text

# Function to check for and avoid double negatives
def correct_double_negatives(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children):
            corrected_text.append("always")
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to ensure subject-verb agreement
def ensure_subject_verb_agreement(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
            if token.tag_ == "NN" and token.head.tag_ != "VBZ":  # Singular noun, should use singular verb
                corrected_text.append(token.head.lemma_ + "s")
            elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":  # Plural noun, should not use singular verb
                corrected_text.append(token.head.lemma_)
        corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to correct spelling errors
def correct_spelling(text):
    words = text.split()
    corrected_words = []
    for word in words:
        corrected_word = spell.correction(word)
        corrected_words.append(corrected_word)
    return ' '.join(corrected_words)

# Function to rephrase text and replace words with their synonyms while maintaining form
def rephrase_with_synonyms(text):
    doc = nlp(text)
    rephrased_text = []

    for token in doc:
        pos_tag = None
        if token.pos_ == "NOUN":
            pos_tag = wordnet.NOUN
        elif token.pos_ == "VERB":
            pos_tag = wordnet.VERB
        elif token.pos_ == "ADJ":
            pos_tag = wordnet.ADJ
        elif token.pos_ == "ADV":
            pos_tag = wordnet.ADV
        
        if pos_tag:
            synonyms = get_synonyms_nltk(token.text, pos_tag)
            if synonyms:
                synonym = synonyms[0]  # Just using the first synonym for simplicity
                if token.pos_ == "VERB":
                    if token.tag_ == "VBG":  # Present participle (e.g., running)
                        synonym = synonym + 'ing'
                    elif token.tag_ == "VBD" or token.tag_ == "VBN":  # Past tense or past participle
                        synonym = synonym + 'ed'
                    elif token.tag_ == "VBZ":  # Third-person singular present
                        synonym = synonym + 's'
                elif token.pos_ == "NOUN" and token.tag_ == "NNS":  # Plural nouns
                    synonym += 's' if not synonym.endswith('s') else ""
                rephrased_text.append(synonym)
            else:
                rephrased_text.append(token.text)
        else:
            rephrased_text.append(token.text)

    return ' '.join(rephrased_text)

# Function to paraphrase and correct grammar with enhanced accuracy
def paraphrase_and_correct(text):
    # Remove meaningless or redundant words first
    cleaned_text = remove_redundant_words(text)
    
    # Capitalize sentences and nouns
    paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
    
    # Ensure first letter of each sentence is capitalized
    paraphrased_text = force_first_letter_capital(paraphrased_text)
    
    # Apply grammatical corrections
    paraphrased_text = correct_article_errors(paraphrased_text)
    paraphrased_text = correct_singular_plural_errors(paraphrased_text)
    paraphrased_text = correct_tense_errors(paraphrased_text)
    paraphrased_text = correct_double_negatives(paraphrased_text)
    paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
    
    # Rephrase with synonyms while maintaining grammatical forms
    paraphrased_text = rephrase_with_synonyms(paraphrased_text)
    
    # Correct spelling errors
    paraphrased_text = correct_spelling(paraphrased_text)
    
    return paraphrased_text

# Gradio app setup with two tabs
with gr.Blocks() as demo:
    with gr.Tab("AI Detection"):
        t1 = gr.Textbox(lines=5, label='Text')
        button1 = gr.Button("🤖 Predict!")
        label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
        score1 = gr.Textbox(lines=1, label='Prob')

        # Connect the prediction function to the button
        button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])

    with gr.Tab("Paraphrasing & Grammar Correction"):
        t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
        button2 = gr.Button("🔄 Paraphrase and Correct")
        result2 = gr.Textbox(lines=10, label='Corrected Text', placeholder="The corrected text will appear here...")

        # Connect the paraphrasing and correction function to the button
        button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)

demo.launch(share=True)  # Share=True to create a public link