File size: 6,685 Bytes
b0503ee
84669bc
b7577da
7feda08
90fff6b
7fc55d1
 
6d0ac04
90fff6b
 
 
 
 
 
 
 
 
7fc55d1
51568dc
6ba2176
90fff6b
6ba2176
 
 
c163eb2
6ba2176
7feda08
90fff6b
f036c05
 
15f7e94
 
 
 
e00f367
90fff6b
 
f79e1dd
90fff6b
 
f79e1dd
 
90fff6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f79e1dd
90fff6b
 
 
 
 
 
 
f79e1dd
90fff6b
 
 
f79e1dd
90fff6b
 
 
e00f367
 
 
f79e1dd
e00f367
 
 
 
 
 
 
 
 
 
f79e1dd
e00f367
 
90fff6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e00f367
 
 
90fff6b
 
 
 
 
 
 
 
e00f367
 
 
 
90fff6b
e00f367
 
 
90fff6b
e00f367
 
de007f1
a456e86
 
 
 
de007f1
a456e86
 
 
 
e00f367
 
90fff6b
e00f367
 
90fff6b
 
a456e86
 
 
90fff6b
 
 
a456e86
 
 
847e3e1
90fff6b
c163eb2
90fff6b
 
 
 
 
 
 
 
f79e1dd
90fff6b
 
 
 
 
 
 
aed9390
90fff6b
2f3beab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet

# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")

# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
    res = pipeline_en(text)[0]
    return res['label'], res['score']

# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')

# Ensure the SpaCy model is installed for Humanifier
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

# Function to get synonyms using NLTK WordNet (Humanifier)
def get_synonyms_nltk(word, pos):
    synsets = wordnet.synsets(word, pos=pos)
    if synsets:
        lemmas = synsets[0].lemmas()
        return [lemma.name() for lemma in lemmas]
    return []

# Updated function to replace words with synonyms while preserving verb forms and pluralization
def replace_with_synonyms(text):
    doc = nlp(text)
    replaced_words = {}
    corrected_text = []

    for token in doc:
        word = token.text
        pos = token.pos_

        # Get the WordNet POS tag format
        if pos == "VERB":
            wordnet_pos = wordnet.VERB
        elif pos == "NOUN":
            wordnet_pos = wordnet.NOUN
        elif pos == "ADJ":
            wordnet_pos = wordnet.ADJ
        elif pos == "ADV":
            wordnet_pos = wordnet.ADV
        else:
            corrected_text.append(word)  # No change for other POS
            continue

        # Get synonyms for the word based on POS
        if word in replaced_words:
            synonym = replaced_words[word]
        else:
            synonyms = get_synonyms_nltk(word, wordnet_pos)
            if synonyms:
                synonym = synonyms[0]  # Use the first synonym
                # Ensure the synonym retains the same form (e.g., plural, verb form)
                if pos == "VERB":
                    synonym = token.lemma_ if synonym == token.lemma_ else token._.inflect(token.tag_)
                if pos == "NOUN" and token.tag_ == "NNS":  # If plural noun, make sure synonym is plural
                    synonym += 's'
                replaced_words[word] = synonym
            else:
                synonym = word  # No synonym found, keep the word as is

        corrected_text.append(synonym)

    return ' '.join(corrected_text)

# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
def capitalize_sentences_and_nouns(text):
    doc = nlp(text)
    corrected_text = []

    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start:  # First word of the sentence
                sentence.append(token.text.capitalize())
            elif token.pos_ == "PROPN":  # Proper noun
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text)
        corrected_text.append(' '.join(sentence))

    return ' '.join(corrected_text)

# Function to paraphrase and correct grammar with stronger synonym usage
def paraphrase_and_correct(text):
    paraphrased_text = capitalize_sentences_and_nouns(text)  # Capitalize first to ensure proper noun capitalization
    
    # Replace words with their synonyms
    paraphrased_text = replace_with_synonyms(paraphrased_text)

    # Apply grammatical corrections (can include other corrections from the original functions)
    paraphrased_text = correct_article_errors(paraphrased_text)
    paraphrased_text = correct_singular_plural_errors(paraphrased_text)
    paraphrased_text = correct_tense_errors(paraphrased_text)

    return paraphrased_text

# Correct article errors
def correct_article_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.text in ['a', 'an']:
            next_token = token.nbor(1)
            if token.text == "a" and next_token.text[0].lower() in "aeiou":
                corrected_text.append("an")
            elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
                corrected_text.append("a")
            else:
                corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Correct singular/plural errors
def correct_singular_plural_errors(text):
    doc = nlp(text)
    corrected_text = []
    
    for token in doc:
        if token.pos_ == "NOUN":
            if token.tag_ == "NN":  # Singular noun
                if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
                    corrected_text.append(token.lemma_ + 's')
                else:
                    corrected_text.append(token.text)
            elif token.tag_ == "NNS":  # Plural noun
                if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
                    corrected_text.append(token.lemma_)
                else:
                    corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    
    return ' '.join(corrected_text)

# Correct tense errors in verbs
def correct_tense_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
            lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
            corrected_text.append(lemma)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Gradio app setup with two tabs
with gr.Blocks() as demo:
    with gr.Tab("AI Detection"):
        t1 = gr.Textbox(lines=5, label='Text')
        button1 = gr.Button("🤖 Predict!")
        label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
        score1 = gr.Textbox(lines=1, label='Prob')

        # Connect the prediction function to the button
        button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
    
    with gr.Tab("Humanifier"):
        text_input = gr.Textbox(lines=5, label="Input Text")
        paraphrase_button = gr.Button("Paraphrase & Correct")
        output_text = gr.Textbox(label="Paraphrased Text")

        # Connect the paraphrasing function to the button
        paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)

# Launch the app with the remaining functionalities
demo.launch()