|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
|
|
|
|
MODEL_NAME = "deepset/roberta-large-squad2" |
|
qa_pipeline = pipeline( |
|
"question-answering", |
|
model=MODEL_NAME, |
|
tokenizer=MODEL_NAME |
|
|
|
) |
|
|
|
|
|
def answer_question(question, context): |
|
|
|
result = qa_pipeline( |
|
question=question, |
|
context=context, |
|
handle_impossible_answer=True, |
|
top_k=1, |
|
max_answer_len=30 |
|
) |
|
answer = result.get("answer", "").strip() |
|
score = result.get("score", 0.0) |
|
|
|
if answer == "" or score < 0.1: |
|
|
|
return "🤔 I’m not sure – the model couldn’t find a clear answer in the text." |
|
return answer |
|
|
|
|
|
interface = gr.Interface( |
|
fn=answer_question, |
|
inputs=[ |
|
gr.components.Textbox(lines=2, label="Question"), |
|
gr.components.Textbox(lines=10, label="Context") |
|
], |
|
outputs=gr.components.Textbox(label="Answer"), |
|
title="Question Answering Demo", |
|
description="Ask a question and get an answer from the provided context. " \ |
|
"Supports unanswerable questions." |
|
) |
|
|
|
if __name__ == "__main__": |
|
interface.launch() |
|
|