import gradio as gr | |
from transformers import pipeline | |
# Create a text-generation pipeline using GPT-2 | |
generator = pipeline('text-generation', model='gpt2') | |
def generate_text(prompt): | |
generated = generator( | |
prompt, | |
max_length=30, # Limit the output length | |
do_sample=True, # Enable sampling for more natural responses | |
temperature=0.3, # Lower temperature for less randomness | |
repetition_penalty=1.5, # Penalize repeated tokens | |
no_repeat_ngram_size=2 # Avoid repeating any 2-word sequences | |
) | |
return generated[0]['generated_text'] | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs="text", | |
outputs="text", | |
title="Simple LLM with Hugging Face & Gradio", | |
description="Enter a prompt and get a concise, factual answer." | |
) | |
iface.launch() | |