Spaces:
Runtime error
Runtime error
File size: 28,141 Bytes
50f18bd 15bb146 c7fc100 a9d900f 15bb146 c7fc100 b56f671 a9d900f 83a3deb 008f512 a9d900f 50f18bd a9d900f 83a3deb a9d900f 83a3deb a9d900f 008f512 a9d900f 008f512 a9d900f 008f512 a9d900f 008f512 a9d900f 008f512 a9d900f 008f512 a9d900f 008f512 a9d900f 83a3deb 008f512 83a3deb 008f512 83a3deb a9d900f 008f512 a9d900f 83a3deb 008f512 83a3deb 008f512 83a3deb a9d900f 008f512 a9d900f 83a3deb a9d900f c7fc100 2d95e30 c7fc100 2d95e30 c7fc100 2d95e30 c7fc100 2d95e30 c7fc100 2d95e30 c7fc100 2d95e30 c7fc100 2d95e30 c7fc100 2d95e30 c7fc100 2d95e30 c7fc100 2d95e30 c7fc100 2d95e30 c7fc100 997480e a9d900f 2d95e30 a9d900f 2d95e30 a9d900f 2d95e30 a9d900f 2d95e30 a9d900f 2d95e30 a9d900f 2d95e30 a9d900f 2d95e30 a9d900f 2d95e30 997480e 15bb146 c7fc100 a9d900f c7fc100 a9d900f c7fc100 a9d900f c7fc100 a9d900f c7fc100 a9d900f c7fc100 a9d900f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from typing import Any
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Advanced Modular Agent Implementation ---
import json
import logging
import mimetypes
import openpyxl
import numpy as np
from datetime import datetime
from io import BytesIO
from PIL import Image
import subprocess
import tempfile
from huggingface_hub import InferenceClient
import cv2
import torch
from bs4 import BeautifulSoup
import openai
import magic # for robust file type detection
logging.basicConfig(filename='gaia_agent.log', level=logging.INFO, format='%(asctime)s %(levelname)s:%(message)s')
logger = logging.getLogger(__name__)
HF_TOKEN = os.environ.get("HF_TOKEN", "")
def llama3_chat(prompt):
try:
client = InferenceClient(provider="fireworks-ai", api_key=HF_TOKEN)
completion = client.chat.completions.create(
model="meta-llama/Llama-3.1-8B-Instruct",
messages=[{"role": "user", "content": prompt}],
)
return completion.choices[0].message.content
except Exception as e:
logging.error(f"llama3_chat error: {e}")
return f"LLM error: {e}"
def mixtral_chat(prompt):
try:
client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN)
completion = client.chat.completions.create(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
messages=[{"role": "user", "content": prompt}],
)
return completion.choices[0].message.content
except Exception as e:
logging.error(f"mixtral_chat error: {e}")
return f"LLM error: {e}"
def extractive_qa(question, context):
try:
client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN)
answer = client.question_answering(
question=question,
context=context,
model="deepset/roberta-base-squad2",
)
return answer["answer"]
except Exception as e:
logging.error(f"extractive_qa error: {e}")
return f"QA error: {e}"
def table_qa(query, table):
try:
client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN)
answer = client.table_question_answering(
query=query,
table=table,
model="google/tapas-large-finetuned-wtq",
)
return answer["answer"]
except Exception as e:
logging.error(f"table_qa error: {e}")
return f"Table QA error: {e}"
def asr_transcribe(audio_path):
try:
import torchaudio
from transformers import pipeline
asr = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
result = asr(audio_path)
return result["text"]
except Exception as e:
logging.error(f"asr_transcribe error: {e}")
return f"ASR error: {e}"
def image_caption(image_path):
try:
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
raw_image = Image.open(image_path).convert('RGB')
inputs = processor(raw_image, return_tensors="pt")
out = model.generate(**inputs)
return processor.decode(out[0], skip_special_tokens=True)
except Exception as e:
logging.error(f"image_caption error: {e}")
return f"Image captioning error: {e}"
def code_analysis(py_path):
try:
with open(py_path) as f:
code = f.read()
with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as tmp:
tmp.write(code)
tmp_path = tmp.name
try:
result = subprocess.run([
"python3", tmp_path
], capture_output=True, text=True, timeout=5)
if result.returncode == 0:
output = result.stdout.strip().split('\n')
return output[-1] if output else ''
else:
logging.error(f"code_analysis subprocess error: {result.stderr}")
return f"Code error: {result.stderr}"
except subprocess.TimeoutExpired:
logging.error("code_analysis timeout")
return "Code execution timed out"
finally:
os.remove(tmp_path)
except Exception as e:
logging.error(f"code_analysis error: {e}")
return f"Code analysis error: {e}"
def youtube_video_qa(youtube_url, question):
import subprocess
import tempfile
import os
from transformers import pipeline
try:
with tempfile.TemporaryDirectory() as tmpdir:
# Download video
video_path = os.path.join(tmpdir, "video.mp4")
cmd = ["yt-dlp", "-f", "mp4", "-o", video_path, youtube_url]
subprocess.run(cmd, check=True)
# Extract audio for ASR
audio_path = os.path.join(tmpdir, "audio.mp3")
cmd_audio = ["yt-dlp", "-f", "bestaudio", "--extract-audio", "--audio-format", "mp3", "-o", audio_path, youtube_url]
subprocess.run(cmd_audio, check=True)
# Transcribe audio
asr = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
result = asr(audio_path)
transcript = result["text"]
# Extract frames for vision QA
cap = cv2.VideoCapture(video_path)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
frames = []
for i in range(0, frame_count, max(1, fps*5)):
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = cap.read()
if not ret:
break
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
frames.append(img)
cap.release()
# Object detection (YOLOv8)
try:
from ultralytics import YOLO
yolo = YOLO("yolov8n.pt")
detections = []
for img in frames:
results = yolo(np.array(img))
for r in results:
for c in r.boxes.cls:
detections.append(yolo.model.names[int(c)])
detection_summary = {}
for obj in detections:
detection_summary[obj] = detection_summary.get(obj, 0) + 1
except Exception as e:
logging.error(f"YOLOv8 error: {e}")
detection_summary = {}
# Image captioning (BLIP)
try:
from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
captions = []
for img in frames:
inputs = processor(img, return_tensors="pt")
out = model.generate(**inputs)
captions.append(processor.decode(out[0], skip_special_tokens=True))
except Exception as e:
logging.error(f"BLIP error: {e}")
captions = []
context = f"Transcript: {transcript}\nCaptions: {' | '.join(captions)}\nDetections: {detection_summary}"
answer = extractive_qa(question, context)
return answer
except Exception as e:
logging.error(f"YouTube video QA error: {e}")
return f"Video analysis error: {e}"
def web_search_duckduckgo(query, max_results=5):
"""DuckDuckGo web search tool: returns top snippets and URLs."""
try:
import duckduckgo_search
results = duckduckgo_search.DuckDuckGoSearch().search(query, max_results=max_results)
snippets = []
for r in results:
snippet = f"Title: {r['title']}\nSnippet: {r['body']}\nURL: {r['href']}"
snippets.append(snippet)
return '\n---\n'.join(snippets)
except Exception as e:
logging.error(f"web_search_duckduckgo error: {e}")
return f"Web search error: {e}"
def gpt4_chat(prompt, api_key=None):
"""OpenAI GPT-4.1 chat completion."""
try:
api_key = api_key or os.environ.get("OPENAI_API_KEY", "")
if not api_key:
return "No OpenAI API key provided."
response = openai.ChatCompletion.create(
model="gpt-4-1106-preview",
messages=[{"role": "system", "content": "You are a general AI assistant. Answer using as few words as possible, in the required format. Use tools as needed, and only output the answer."},
{"role": "user", "content": prompt}],
api_key=api_key,
)
return response.choices[0].message['content'].strip()
except Exception as e:
logging.error(f"gpt4_chat error: {e}")
return f"GPT-4 error: {e}"
TOOL_REGISTRY = {
"llama3_chat": llama3_chat,
"mixtral_chat": mixtral_chat,
"extractive_qa": extractive_qa,
"table_qa": table_qa,
"asr_transcribe": asr_transcribe,
"image_caption": image_caption,
"code_analysis": code_analysis,
"youtube_video_qa": youtube_video_qa,
"web_search_duckduckgo": web_search_duckduckgo,
"gpt4_chat": gpt4_chat,
}
# --- Utility: Robust file type detection ---
def detect_file_type_magic(file_name):
try:
mime = magic.Magic(mime=True)
filetype = mime.from_file(file_name)
if 'audio' in filetype:
return 'audio'
elif 'image' in filetype:
return 'image'
elif 'python' in filetype or file_name.endswith('.py'):
return 'code'
elif 'spreadsheet' in filetype or file_name.endswith('.xlsx'):
return 'excel'
elif 'csv' in filetype or file_name.endswith('.csv'):
return 'csv'
elif 'json' in filetype or file_name.endswith('.json'):
return 'json'
elif 'text' in filetype or file_name.endswith(('.txt', '.md')):
return 'text'
else:
return 'unknown'
except Exception as e:
logger.error(f"magic file type detection error: {e}")
return 'unknown'
# --- Improved prompt template for LLMs ---
def build_prompt(context, question):
return f"""
Context:
{context}
Question:
{question}
Answer:
"""
# --- Refactored ModularGAIAAgent ---
class ModularGAIAAgent:
def __init__(self, api_url=DEFAULT_API_URL, tool_registry=None):
self.api_url = api_url
self.tools = tool_registry or TOOL_REGISTRY
self.reasoning_trace = []
self.file_cache = set(os.listdir('.'))
def fetch_questions(self, from_api=True, questions_path="Hugging Face Questions"):
"""Fetch questions from API or local file."""
try:
if from_api:
r = requests.get(f"{self.api_url}/questions")
r.raise_for_status()
return r.json()
else:
with open(questions_path) as f:
data = f.read()
start = data.find("[")
end = data.rfind("]") + 1
questions = json.loads(data[start:end])
return questions
except Exception as e:
logger.error(f"fetch_questions error: {e}")
return []
def download_file(self, file_id, file_name=None):
"""Download file if not present locally."""
try:
if not file_name:
file_name = file_id
if file_name in self.file_cache:
return file_name
url = f"{self.api_url}/files/{file_id}"
r = requests.get(url)
if r.status_code == 200:
with open(file_name, "wb") as f:
f.write(r.content)
self.file_cache.add(file_name)
return file_name
else:
self.reasoning_trace.append(f"Failed to download file {file_id} (status {r.status_code})")
logger.error(f"Failed to download file {file_id} (status {r.status_code})")
return None
except Exception as e:
logger.error(f"download_file error: {e}")
self.reasoning_trace.append(f"Download error: {e}")
return None
def detect_file_type(self, file_name):
"""Detect file type using magic and extension as fallback."""
file_type = detect_file_type_magic(file_name)
if file_type == 'unknown':
ext = os.path.splitext(file_name)[-1].lower()
if ext in ['.mp3', '.wav', '.flac']:
return 'audio'
elif ext in ['.png', '.jpg', '.jpeg', '.bmp']:
return 'image'
elif ext in ['.py']:
return 'code'
elif ext in ['.xlsx']:
return 'excel'
elif ext in ['.csv']:
return 'csv'
elif ext in ['.json']:
return 'json'
elif ext in ['.txt', '.md']:
return 'text'
else:
return 'unknown'
return file_type
def analyze_file(self, file_name, file_type):
"""Analyze file and return context for the question."""
try:
if file_type == 'audio':
transcript = self.tools['asr_transcribe'](file_name)
self.reasoning_trace.append(f"Transcribed audio: {transcript[:100]}...")
return transcript
elif file_type == 'image':
caption = self.tools['image_caption'](file_name)
self.reasoning_trace.append(f"Image caption: {caption}")
return caption
elif file_type == 'code':
result = self.tools['code_analysis'](file_name)
self.reasoning_trace.append(f"Code analysis result: {result}")
return result
elif file_type == 'excel':
wb = openpyxl.load_workbook(file_name)
ws = wb.active
data = list(ws.values)
headers = data[0]
table = [dict(zip(headers, row)) for row in data[1:]]
self.reasoning_trace.append(f"Excel table loaded: {table[:2]}...")
return table
elif file_type == 'csv':
df = pd.read_csv(file_name)
table = df.to_dict(orient='records')
self.reasoning_trace.append(f"CSV table loaded: {table[:2]}...")
return table
elif file_type == 'json':
with open(file_name) as f:
data = json.load(f)
self.reasoning_trace.append(f"JSON loaded: {str(data)[:100]}...")
return data
elif file_type == 'text':
with open(file_name) as f:
text = f.read()
self.reasoning_trace.append(f"Text loaded: {text[:100]}...")
return text
else:
self.reasoning_trace.append(f"Unknown file type: {file_name}")
logger.warning(f"Unknown file type: {file_name}")
return None
except Exception as e:
logger.error(f"analyze_file error: {e}")
self.reasoning_trace.append(f"Analyze file error: {e}")
return None
def smart_tool_select(self, question, file_type=None):
"""Select the best tool(s) for the question, optionally using GPT-4.1 for planning."""
api_key = os.environ.get("OPENAI_API_KEY", "")
try:
if api_key:
plan_prompt = f"""
You are an expert AI agent. Given the following question and file type, suggest the best tool(s) to use from this list: {list(self.tools.keys())}.
Question: {question}
File type: {file_type}
Respond with a comma-separated list of tool names only, in order of use. If unsure, start with web_search_duckduckgo.
"""
plan = gpt4_chat(plan_prompt, api_key=api_key)
tool_names = [t.strip() for t in plan.split(',') if t.strip() in self.tools]
if tool_names:
return tool_names
except Exception as e:
logger.error(f"smart_tool_select planning error: {e}")
# Fallback: heuristic
if file_type == 'audio':
return ['asr_transcribe']
elif file_type == 'image':
return ['image_caption']
elif file_type == 'code':
return ['code_analysis']
elif file_type in ['excel', 'csv']:
return ['table_qa']
elif 'youtube.com' in question or 'youtu.be' in question:
return ['youtube_video_qa']
elif any(w in question.lower() for w in ['wikipedia', 'who', 'when', 'where', 'what', 'how', 'find', 'search']):
return ['web_search_duckduckgo']
else:
return ['llama3_chat']
def answer_question(self, question_obj):
"""Answer a question using the best tool(s) and context."""
self.reasoning_trace = []
q = question_obj["question"]
file_name = question_obj.get("file_name", "")
file_content = None
file_type = None
if file_name:
file_id = file_name.split('.')[0]
local_file = self.download_file(file_id, file_name)
if local_file:
file_type = self.detect_file_type(local_file)
file_content = self.analyze_file(local_file, file_type)
# Smart tool selection
tool_names = self.smart_tool_select(q, file_type)
answer = None
context = file_content
for tool_name in tool_names:
tool = self.tools[tool_name]
try:
logger.info(f"Using tool: {tool_name} | Question: {q} | Context: {str(context)[:200]}")
if tool_name == 'web_search_duckduckgo':
context = tool(q)
answer = llama3_chat(build_prompt(context, q))
elif tool_name == 'gpt4_chat':
answer = tool(build_prompt(context, q))
elif tool_name == 'table_qa' and file_content:
answer = tool(q, file_content)
elif tool_name in ['asr_transcribe', 'image_caption', 'code_analysis'] and file_content:
answer = tool(file_name)
elif tool_name == 'youtube_video_qa':
answer = tool(q, q)
else:
# Always pass context if available
if context:
answer = llama3_chat(build_prompt(context, q))
else:
answer = tool(q)
if answer:
break
except Exception as e:
logger.error(f"Tool {tool_name} error: {e}")
self.reasoning_trace.append(f"Tool {tool_name} error: {e}")
continue
self.reasoning_trace.append(f"Tools used: {tool_names}")
self.reasoning_trace.append(f"Final answer: {answer}")
return self.format_answer(answer), self.reasoning_trace
def format_answer(self, answer):
"""Strict GAIA: only the answer, no extra text, no prefix."""
if isinstance(answer, str):
return answer.strip().split('\n')[0]
return str(answer)
# --- Basic Agent Definition (now wraps ModularGAIAAgent) ---
class BasicAgent:
def __init__(self):
print("BasicAgent (GAIA Modular Agent) initialized.")
self.agent = ModularGAIAAgent()
def __call__(self, question: str, file_name: str = "") -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
try:
answer, trace = self.agent.answer_question({"task_id": "manual", "question": question, "file_name": file_name})
print(f"Agent returning answer: {answer}")
return answer
except Exception as e:
print(f"Agent error: {e}")
return f"AGENT ERROR: {e}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
file_name = item.get("file_name", "")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text, file_name)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}")
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |