File size: 28,141 Bytes
50f18bd
15bb146
c7fc100
 
 
a9d900f
15bb146
c7fc100
 
 
b56f671
a9d900f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83a3deb
008f512
a9d900f
 
 
 
 
 
 
 
 
 
 
 
 
50f18bd
a9d900f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83a3deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9d900f
 
 
 
 
 
 
 
 
83a3deb
 
a9d900f
 
008f512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9d900f
008f512
a9d900f
008f512
a9d900f
 
 
 
008f512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9d900f
 
008f512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9d900f
 
 
008f512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9d900f
 
008f512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9d900f
 
83a3deb
 
 
008f512
 
 
83a3deb
 
 
 
 
008f512
 
 
 
 
 
83a3deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9d900f
008f512
a9d900f
 
 
 
 
 
 
 
 
 
 
83a3deb
 
 
008f512
83a3deb
 
008f512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83a3deb
a9d900f
 
 
 
008f512
a9d900f
83a3deb
 
a9d900f
 
c7fc100
 
 
 
2d95e30
c7fc100
 
2d95e30
c7fc100
 
 
 
 
 
2d95e30
c7fc100
 
 
 
2d95e30
c7fc100
2d95e30
c7fc100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d95e30
 
c7fc100
 
 
 
 
2d95e30
 
 
c7fc100
 
 
 
 
 
 
 
 
2d95e30
c7fc100
 
 
 
2d95e30
c7fc100
 
 
2d95e30
 
c7fc100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d95e30
c7fc100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
997480e
a9d900f
2d95e30
 
 
 
 
a9d900f
2d95e30
 
 
a9d900f
2d95e30
 
 
 
 
 
a9d900f
2d95e30
a9d900f
2d95e30
a9d900f
2d95e30
a9d900f
2d95e30
a9d900f
2d95e30
 
 
997480e
15bb146
 
c7fc100
a9d900f
c7fc100
a9d900f
 
c7fc100
 
 
 
 
a9d900f
 
c7fc100
 
 
 
 
a9d900f
c7fc100
a9d900f
c7fc100
a9d900f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from typing import Any

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Advanced Modular Agent Implementation ---
import json
import logging
import mimetypes
import openpyxl
import numpy as np
from datetime import datetime
from io import BytesIO
from PIL import Image
import subprocess
import tempfile
from huggingface_hub import InferenceClient
import cv2
import torch
from bs4 import BeautifulSoup
import openai
import magic  # for robust file type detection

logging.basicConfig(filename='gaia_agent.log', level=logging.INFO, format='%(asctime)s %(levelname)s:%(message)s')
logger = logging.getLogger(__name__)
HF_TOKEN = os.environ.get("HF_TOKEN", "")

def llama3_chat(prompt):
    try:
        client = InferenceClient(provider="fireworks-ai", api_key=HF_TOKEN)
        completion = client.chat.completions.create(
            model="meta-llama/Llama-3.1-8B-Instruct",
            messages=[{"role": "user", "content": prompt}],
        )
        return completion.choices[0].message.content
    except Exception as e:
        logging.error(f"llama3_chat error: {e}")
        return f"LLM error: {e}"

def mixtral_chat(prompt):
    try:
        client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN)
        completion = client.chat.completions.create(
            model="mistralai/Mixtral-8x7B-Instruct-v0.1",
            messages=[{"role": "user", "content": prompt}],
        )
        return completion.choices[0].message.content
    except Exception as e:
        logging.error(f"mixtral_chat error: {e}")
        return f"LLM error: {e}"

def extractive_qa(question, context):
    try:
        client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN)
        answer = client.question_answering(
            question=question,
            context=context,
            model="deepset/roberta-base-squad2",
        )
        return answer["answer"]
    except Exception as e:
        logging.error(f"extractive_qa error: {e}")
        return f"QA error: {e}"

def table_qa(query, table):
    try:
        client = InferenceClient(provider="hf-inference", api_key=HF_TOKEN)
        answer = client.table_question_answering(
            query=query,
            table=table,
            model="google/tapas-large-finetuned-wtq",
        )
        return answer["answer"]
    except Exception as e:
        logging.error(f"table_qa error: {e}")
        return f"Table QA error: {e}"

def asr_transcribe(audio_path):
    try:
        import torchaudio
        from transformers import pipeline
        asr = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
        result = asr(audio_path)
        return result["text"]
    except Exception as e:
        logging.error(f"asr_transcribe error: {e}")
        return f"ASR error: {e}"

def image_caption(image_path):
    try:
        from transformers import BlipProcessor, BlipForConditionalGeneration
        from PIL import Image
        processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
        model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
        raw_image = Image.open(image_path).convert('RGB')
        inputs = processor(raw_image, return_tensors="pt")
        out = model.generate(**inputs)
        return processor.decode(out[0], skip_special_tokens=True)
    except Exception as e:
        logging.error(f"image_caption error: {e}")
        return f"Image captioning error: {e}"

def code_analysis(py_path):
    try:
        with open(py_path) as f:
            code = f.read()
        with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as tmp:
            tmp.write(code)
            tmp_path = tmp.name
        try:
            result = subprocess.run([
                "python3", tmp_path
            ], capture_output=True, text=True, timeout=5)
            if result.returncode == 0:
                output = result.stdout.strip().split('\n')
                return output[-1] if output else ''
            else:
                logging.error(f"code_analysis subprocess error: {result.stderr}")
                return f"Code error: {result.stderr}"
        except subprocess.TimeoutExpired:
            logging.error("code_analysis timeout")
            return "Code execution timed out"
        finally:
            os.remove(tmp_path)
    except Exception as e:
        logging.error(f"code_analysis error: {e}")
        return f"Code analysis error: {e}"

def youtube_video_qa(youtube_url, question):
    import subprocess
    import tempfile
    import os
    from transformers import pipeline
    try:
        with tempfile.TemporaryDirectory() as tmpdir:
            # Download video
            video_path = os.path.join(tmpdir, "video.mp4")
            cmd = ["yt-dlp", "-f", "mp4", "-o", video_path, youtube_url]
            subprocess.run(cmd, check=True)
            # Extract audio for ASR
            audio_path = os.path.join(tmpdir, "audio.mp3")
            cmd_audio = ["yt-dlp", "-f", "bestaudio", "--extract-audio", "--audio-format", "mp3", "-o", audio_path, youtube_url]
            subprocess.run(cmd_audio, check=True)
            # Transcribe audio
            asr = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
            result = asr(audio_path)
            transcript = result["text"]
            # Extract frames for vision QA
            cap = cv2.VideoCapture(video_path)
            frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
            fps = int(cap.get(cv2.CAP_PROP_FPS))
            frames = []
            for i in range(0, frame_count, max(1, fps*5)):
                cap.set(cv2.CAP_PROP_POS_FRAMES, i)
                ret, frame = cap.read()
                if not ret:
                    break
                img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
                frames.append(img)
            cap.release()
            # Object detection (YOLOv8)
            try:
                from ultralytics import YOLO
                yolo = YOLO("yolov8n.pt")
                detections = []
                for img in frames:
                    results = yolo(np.array(img))
                    for r in results:
                        for c in r.boxes.cls:
                            detections.append(yolo.model.names[int(c)])
                detection_summary = {}
                for obj in detections:
                    detection_summary[obj] = detection_summary.get(obj, 0) + 1
            except Exception as e:
                logging.error(f"YOLOv8 error: {e}")
                detection_summary = {}
            # Image captioning (BLIP)
            try:
                from transformers import BlipProcessor, BlipForConditionalGeneration
                processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
                model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
                captions = []
                for img in frames:
                    inputs = processor(img, return_tensors="pt")
                    out = model.generate(**inputs)
                    captions.append(processor.decode(out[0], skip_special_tokens=True))
            except Exception as e:
                logging.error(f"BLIP error: {e}")
                captions = []
            context = f"Transcript: {transcript}\nCaptions: {' | '.join(captions)}\nDetections: {detection_summary}"
            answer = extractive_qa(question, context)
            return answer
    except Exception as e:
        logging.error(f"YouTube video QA error: {e}")
        return f"Video analysis error: {e}"

def web_search_duckduckgo(query, max_results=5):
    """DuckDuckGo web search tool: returns top snippets and URLs."""
    try:
        import duckduckgo_search
        results = duckduckgo_search.DuckDuckGoSearch().search(query, max_results=max_results)
        snippets = []
        for r in results:
            snippet = f"Title: {r['title']}\nSnippet: {r['body']}\nURL: {r['href']}"
            snippets.append(snippet)
        return '\n---\n'.join(snippets)
    except Exception as e:
        logging.error(f"web_search_duckduckgo error: {e}")
        return f"Web search error: {e}"

def gpt4_chat(prompt, api_key=None):
    """OpenAI GPT-4.1 chat completion."""
    try:
        api_key = api_key or os.environ.get("OPENAI_API_KEY", "")
        if not api_key:
            return "No OpenAI API key provided."
        response = openai.ChatCompletion.create(
            model="gpt-4-1106-preview",
            messages=[{"role": "system", "content": "You are a general AI assistant. Answer using as few words as possible, in the required format. Use tools as needed, and only output the answer."},
                     {"role": "user", "content": prompt}],
            api_key=api_key,
        )
        return response.choices[0].message['content'].strip()
    except Exception as e:
        logging.error(f"gpt4_chat error: {e}")
        return f"GPT-4 error: {e}"

TOOL_REGISTRY = {
    "llama3_chat": llama3_chat,
    "mixtral_chat": mixtral_chat,
    "extractive_qa": extractive_qa,
    "table_qa": table_qa,
    "asr_transcribe": asr_transcribe,
    "image_caption": image_caption,
    "code_analysis": code_analysis,
    "youtube_video_qa": youtube_video_qa,
    "web_search_duckduckgo": web_search_duckduckgo,
    "gpt4_chat": gpt4_chat,
}

# --- Utility: Robust file type detection ---
def detect_file_type_magic(file_name):
    try:
        mime = magic.Magic(mime=True)
        filetype = mime.from_file(file_name)
        if 'audio' in filetype:
            return 'audio'
        elif 'image' in filetype:
            return 'image'
        elif 'python' in filetype or file_name.endswith('.py'):
            return 'code'
        elif 'spreadsheet' in filetype or file_name.endswith('.xlsx'):
            return 'excel'
        elif 'csv' in filetype or file_name.endswith('.csv'):
            return 'csv'
        elif 'json' in filetype or file_name.endswith('.json'):
            return 'json'
        elif 'text' in filetype or file_name.endswith(('.txt', '.md')):
            return 'text'
        else:
            return 'unknown'
    except Exception as e:
        logger.error(f"magic file type detection error: {e}")
        return 'unknown'

# --- Improved prompt template for LLMs ---
def build_prompt(context, question):
    return f"""
Context:
{context}

Question:
{question}

Answer:
"""

# --- Refactored ModularGAIAAgent ---
class ModularGAIAAgent:
    def __init__(self, api_url=DEFAULT_API_URL, tool_registry=None):
        self.api_url = api_url
        self.tools = tool_registry or TOOL_REGISTRY
        self.reasoning_trace = []
        self.file_cache = set(os.listdir('.'))

    def fetch_questions(self, from_api=True, questions_path="Hugging Face Questions"):
        """Fetch questions from API or local file."""
        try:
            if from_api:
                r = requests.get(f"{self.api_url}/questions")
                r.raise_for_status()
                return r.json()
            else:
                with open(questions_path) as f:
                    data = f.read()
                start = data.find("[")
                end = data.rfind("]") + 1
                questions = json.loads(data[start:end])
                return questions
        except Exception as e:
            logger.error(f"fetch_questions error: {e}")
            return []

    def download_file(self, file_id, file_name=None):
        """Download file if not present locally."""
        try:
            if not file_name:
                file_name = file_id
            if file_name in self.file_cache:
                return file_name
            url = f"{self.api_url}/files/{file_id}"
            r = requests.get(url)
            if r.status_code == 200:
                with open(file_name, "wb") as f:
                    f.write(r.content)
                self.file_cache.add(file_name)
                return file_name
            else:
                self.reasoning_trace.append(f"Failed to download file {file_id} (status {r.status_code})")
                logger.error(f"Failed to download file {file_id} (status {r.status_code})")
                return None
        except Exception as e:
            logger.error(f"download_file error: {e}")
            self.reasoning_trace.append(f"Download error: {e}")
            return None

    def detect_file_type(self, file_name):
        """Detect file type using magic and extension as fallback."""
        file_type = detect_file_type_magic(file_name)
        if file_type == 'unknown':
            ext = os.path.splitext(file_name)[-1].lower()
            if ext in ['.mp3', '.wav', '.flac']:
                return 'audio'
            elif ext in ['.png', '.jpg', '.jpeg', '.bmp']:
                return 'image'
            elif ext in ['.py']:
                return 'code'
            elif ext in ['.xlsx']:
                return 'excel'
            elif ext in ['.csv']:
                return 'csv'
            elif ext in ['.json']:
                return 'json'
            elif ext in ['.txt', '.md']:
                return 'text'
            else:
                return 'unknown'
        return file_type

    def analyze_file(self, file_name, file_type):
        """Analyze file and return context for the question."""
        try:
            if file_type == 'audio':
                transcript = self.tools['asr_transcribe'](file_name)
                self.reasoning_trace.append(f"Transcribed audio: {transcript[:100]}...")
                return transcript
            elif file_type == 'image':
                caption = self.tools['image_caption'](file_name)
                self.reasoning_trace.append(f"Image caption: {caption}")
                return caption
            elif file_type == 'code':
                result = self.tools['code_analysis'](file_name)
                self.reasoning_trace.append(f"Code analysis result: {result}")
                return result
            elif file_type == 'excel':
                wb = openpyxl.load_workbook(file_name)
                ws = wb.active
                data = list(ws.values)
                headers = data[0]
                table = [dict(zip(headers, row)) for row in data[1:]]
                self.reasoning_trace.append(f"Excel table loaded: {table[:2]}...")
                return table
            elif file_type == 'csv':
                df = pd.read_csv(file_name)
                table = df.to_dict(orient='records')
                self.reasoning_trace.append(f"CSV table loaded: {table[:2]}...")
                return table
            elif file_type == 'json':
                with open(file_name) as f:
                    data = json.load(f)
                self.reasoning_trace.append(f"JSON loaded: {str(data)[:100]}...")
                return data
            elif file_type == 'text':
                with open(file_name) as f:
                    text = f.read()
                self.reasoning_trace.append(f"Text loaded: {text[:100]}...")
                return text
            else:
                self.reasoning_trace.append(f"Unknown file type: {file_name}")
                logger.warning(f"Unknown file type: {file_name}")
                return None
        except Exception as e:
            logger.error(f"analyze_file error: {e}")
            self.reasoning_trace.append(f"Analyze file error: {e}")
            return None

    def smart_tool_select(self, question, file_type=None):
        """Select the best tool(s) for the question, optionally using GPT-4.1 for planning."""
        api_key = os.environ.get("OPENAI_API_KEY", "")
        try:
            if api_key:
                plan_prompt = f"""
You are an expert AI agent. Given the following question and file type, suggest the best tool(s) to use from this list: {list(self.tools.keys())}.
Question: {question}
File type: {file_type}
Respond with a comma-separated list of tool names only, in order of use. If unsure, start with web_search_duckduckgo.
"""
                plan = gpt4_chat(plan_prompt, api_key=api_key)
                tool_names = [t.strip() for t in plan.split(',') if t.strip() in self.tools]
                if tool_names:
                    return tool_names
        except Exception as e:
            logger.error(f"smart_tool_select planning error: {e}")
        # Fallback: heuristic
        if file_type == 'audio':
            return ['asr_transcribe']
        elif file_type == 'image':
            return ['image_caption']
        elif file_type == 'code':
            return ['code_analysis']
        elif file_type in ['excel', 'csv']:
            return ['table_qa']
        elif 'youtube.com' in question or 'youtu.be' in question:
            return ['youtube_video_qa']
        elif any(w in question.lower() for w in ['wikipedia', 'who', 'when', 'where', 'what', 'how', 'find', 'search']):
            return ['web_search_duckduckgo']
        else:
            return ['llama3_chat']

    def answer_question(self, question_obj):
        """Answer a question using the best tool(s) and context."""
        self.reasoning_trace = []
        q = question_obj["question"]
        file_name = question_obj.get("file_name", "")
        file_content = None
        file_type = None
        if file_name:
            file_id = file_name.split('.')[0]
            local_file = self.download_file(file_id, file_name)
            if local_file:
                file_type = self.detect_file_type(local_file)
                file_content = self.analyze_file(local_file, file_type)
        # Smart tool selection
        tool_names = self.smart_tool_select(q, file_type)
        answer = None
        context = file_content
        for tool_name in tool_names:
            tool = self.tools[tool_name]
            try:
                logger.info(f"Using tool: {tool_name} | Question: {q} | Context: {str(context)[:200]}")
                if tool_name == 'web_search_duckduckgo':
                    context = tool(q)
                    answer = llama3_chat(build_prompt(context, q))
                elif tool_name == 'gpt4_chat':
                    answer = tool(build_prompt(context, q))
                elif tool_name == 'table_qa' and file_content:
                    answer = tool(q, file_content)
                elif tool_name in ['asr_transcribe', 'image_caption', 'code_analysis'] and file_content:
                    answer = tool(file_name)
                elif tool_name == 'youtube_video_qa':
                    answer = tool(q, q)
                else:
                    # Always pass context if available
                    if context:
                        answer = llama3_chat(build_prompt(context, q))
                    else:
                        answer = tool(q)
                if answer:
                    break
            except Exception as e:
                logger.error(f"Tool {tool_name} error: {e}")
                self.reasoning_trace.append(f"Tool {tool_name} error: {e}")
                continue
        self.reasoning_trace.append(f"Tools used: {tool_names}")
        self.reasoning_trace.append(f"Final answer: {answer}")
        return self.format_answer(answer), self.reasoning_trace

    def format_answer(self, answer):
        """Strict GAIA: only the answer, no extra text, no prefix."""
        if isinstance(answer, str):
            return answer.strip().split('\n')[0]
        return str(answer)

# --- Basic Agent Definition (now wraps ModularGAIAAgent) ---
class BasicAgent:
    def __init__(self):
        print("BasicAgent (GAIA Modular Agent) initialized.")
        self.agent = ModularGAIAAgent()
    def __call__(self, question: str, file_name: str = "") -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        try:
            answer, trace = self.agent.answer_question({"task_id": "manual", "question": question, "file_name": file_name})
            print(f"Agent returning answer: {answer}")
            return answer
        except Exception as e:
            print(f"Agent error: {e}")
            return f"AGENT ERROR: {e}"

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    space_id = os.getenv("SPACE_ID")
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None
    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        file_name = item.get("file_name", "")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text, file_name)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}")
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)