Spaces:
Runtime error
Runtime error
File size: 3,230 Bytes
953debe 2829eb5 953debe 2829eb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
import gradio as gr
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
dataset = load_dataset("not-lain/wikipedia",revision = "embedded")
data = dataset["train"]
data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset
def search(query: str, k: int = 3 ):
"""a function that embeds a new query and returns the most probable results"""
embedded_query = ST.encode(query) # embed new query
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
k=k # get only top k results
)
return scores, retrieved_examples
def format_prompt(prompt,retrieved_documents,k):
"""using the retrieved documents we will prompt the model to generate our responses"""
PROMPT = f"Question:{prompt}\nContext:"
for idx in range(k) :
PROMPT+= f"{retrieved_documents['text'][idx]}\n"
return PROMPT
def generate(formatted_prompt):
formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
# tell the model to generate
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=1024,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
return tokenizer.decode(response, skip_special_tokens=True)
def rag_chatbot(prompt:str,k:int=2):
scores , retrieved_documents = search(prompt, k)
formatted_prompt = format_prompt(prompt,retrieved_documents,k)
return generate(formatted_prompt)
def rag_chatbot_interface(prompt:str,k:int=2):
scores , retrieved_documents = search(prompt, k)
formatted_prompt = format_prompt(prompt,retrieved_documents,k)
return generate(formatted_prompt)
SYS_PROMPT = """You are an assistant for answering questions.
You are given the extracted parts of a long document and a question. Provide a conversational answer.
If you don't know the answer, just say "I do not know." Don't make up an answer."""
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=bnb_config
)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
iface = gr.Interface(fn=rag_chatbot_interface,
inputs="text",
outputs="text",
input_types=["text"],
output_types=["text"],
title="Retrieval-Augmented Generation Chatbot",
description="This is a chatbot that uses a retrieval-augmented generation approach to provide more accurate answers. It first searches for relevant documents and then generates a response based on the prompt and the retrieved documents."
)
iface.launch() |