Spaces:
Sleeping
Sleeping
File size: 5,958 Bytes
9f841f8 05dd630 5b69c93 05dd630 9f841f8 5b69c93 9f841f8 5b69c93 9f841f8 5b69c93 9f841f8 5b69c93 9f841f8 5b69c93 9f841f8 5b69c93 9f841f8 5b69c93 9f841f8 5b69c93 9f841f8 5b69c93 05dd630 5b69c93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
import logging
from datetime import datetime, timedelta
from newsapi.newsapi_client import NewsApiClient
from textblob import TextBlob
import yfinance as yf
import pandas as pd
import ta
import gradio as gr
from groq import Groq
# Set up logging
logging.basicConfig(level=logging.WARNING, format='%(asctime)s - %(levelname)s - %(message)s')
# Retrieve API keys from environment variables
NEWSAPI_KEY = os.getenv("NEWSAPI_KEY")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Initialize Groq client
groq_client = Groq(api_key=GROQ_API_KEY)
# Use Groq's Llama 3 model for decision making
MODEL = "llama3-70b-8192"
# Define the list of companies and their stock symbols
top_companies = [
{"name": "Tesla", "symbol": "TSLA"},
{"name": "Meta (Facebook)", "symbol": "META"},
{"name": "Visa", "symbol": "V"},
{"name": "Procter & Gamble", "symbol": "PG"},
{"name": "Coca-Cola", "symbol": "KO"},
{"name": "NVIDIA", "symbol": "NVDA"},
{"name": "Johnson & Johnson", "symbol": "JNJ"},
{"name": "Exxon Mobil", "symbol": "XOM"},
{"name": "Apple", "symbol": "AAPL"},
{"name": "Microsoft", "symbol": "MSFT"},
{"name": "Amazon", "symbol": "AMZN"},
{"name": "Google (Alphabet)", "symbol": "GOOGL"},
]
# Fetch financial news with sentiment analysis
def fetch_financial_news_with_sentiment(stock_symbol=None, page_size=5, days=1):
try:
newsapi = NewsApiClient(api_key=NEWSAPI_KEY)
query = stock_symbol if stock_symbol else "financial news"
end_date = datetime.now()
start_date = end_date - timedelta(days=days)
articles = newsapi.get_everything(
q=query,
language='en',
from_param=start_date.strftime('%Y-%m-%d'),
to=end_date.strftime('%Y-%m-%d'),
sort_by='publishedAt',
page_size=page_size
)
news_results = []
sentiment_results = []
for article in articles.get('articles', []):
title = article.get('title', '[Title Unavailable]')
description = article.get('description', '[Description Unavailable]')
url = article.get('url', 'URL Unavailable')
sentiment = analyze_sentiment(title) if title else "Neutral"
news_results.append(f"Title: {title}\nDescription: {description}\nURL: {url}")
sentiment_results.append(f"Sentiment: {sentiment}")
return "\n\n".join(news_results), "\n\n".join(sentiment_results)
except Exception as e:
return f"Error fetching news: {e}", ""
# Perform sentiment analysis
def analyze_sentiment(text):
try:
analysis = TextBlob(text)
polarity = analysis.sentiment.polarity
if polarity > 0.1:
return "Positive"
elif polarity < -0.1:
return "Negative"
else:
return "Neutral"
except Exception as e:
return f"Error analyzing sentiment: {e}"
# Fetch technical data
def fetch_technical_data(stock_symbol):
try:
stock = yf.Ticker(stock_symbol)
data = stock.history(period="1y")
if data.empty:
return "No data found for this stock symbol."
data['RSI'] = ta.momentum.RSIIndicator(data['Close']).rsi()
macd = ta.trend.MACD(data['Close'])
data['MACD'] = macd.macd()
data['MACD_Signal'] = macd.macd_signal()
data['SMA_50'] = data['Close'].rolling(window=50).mean()
data['SMA_200'] = data['Close'].rolling(window=200).mean()
latest_technical_data = {
"RSI": data['RSI'].iloc[-1],
"MACD": data['MACD'].iloc[-1],
"MACD Signal": data['MACD_Signal'].iloc[-1],
"50 Day SMA": data['SMA_50'].iloc[-1],
"200 Day SMA": data['SMA_200'].iloc[-1],
}
return pd.Series(latest_technical_data).to_string()
except Exception as e:
return f"Error fetching technical data: {e}"
# Generate buy/hold/sell recommendation using Groq
def generate_recommendation(news, technical_data):
prompt = f"Based on the following news:\n{news}\nAnd the technical indicators:\n{technical_data}\nWhat would you recommend: Buy, Hold, or Sell? Provide a brief explanation."
response = groq_client.chat.completions.create(
model=MODEL,
messages=[
{"role": "system", "content": "You are a financial analyst providing stock recommendations."},
{"role": "user", "content": prompt}
],
max_tokens=150
)
return response.choices[0].message.content.strip()
# Define Gradio interface
def analyze_stock(stock_symbol):
symbol = stock_symbol.split('(')[-1].split(')')[0]
news, sentiment = fetch_financial_news_with_sentiment(symbol, days=1)
technical_data = fetch_technical_data(symbol)
recommendation = generate_recommendation(news, technical_data)
return news, sentiment, technical_data, recommendation
with gr.Blocks() as demo:
gr.Markdown("## Financial News and Technical Analysis Tool")
with gr.Row():
stock_input = gr.Dropdown(
choices=[f"{company['name']} ({company['symbol']})" for company in top_companies],
label="Enter Stock Symbol (currently supports only a few companies)",
info="Select a company from the dropdown"
)
analyze_button = gr.Button("Analyze")
recommendation_output = gr.Textbox(label="Recommendation", interactive=False)
with gr.Row():
news_output = gr.Textbox(label="Financial News", interactive=False, lines=10)
sentiment_output = gr.Textbox(label="Sentiment Analysis", interactive=False, lines=10)
technical_output = gr.Textbox(label="Technical Analysis", interactive=False)
analyze_button.click(
analyze_stock,
inputs=[stock_input],
outputs=[news_output, sentiment_output, technical_output, recommendation_output]
)
if __name__ == "__main__":
demo.launch()
|