Spaces:
Sleeping
Sleeping
import os | |
import logging | |
from datetime import datetime, timedelta | |
from newsapi.newsapi_client import NewsApiClient | |
from textblob import TextBlob | |
import yfinance as yf | |
import pandas as pd | |
import ta | |
import gradio as gr | |
from groq import Groq | |
# Set up logging | |
logging.basicConfig(level=logging.WARNING, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Retrieve API keys from environment variables | |
NEWSAPI_KEY = os.getenv("NEWSAPI_KEY") | |
GROQ_API_KEY = os.getenv("GROQ_API_KEY") | |
# Initialize Groq client | |
groq_client = Groq(api_key=GROQ_API_KEY) | |
# Use Groq's Llama 3 model for decision making | |
MODEL = "llama3-70b-8192" | |
# Define the list of companies and their stock symbols | |
top_companies = [ | |
{"name": "Tesla", "symbol": "TSLA"}, | |
{"name": "Meta (Facebook)", "symbol": "META"}, | |
{"name": "Visa", "symbol": "V"}, | |
{"name": "Procter & Gamble", "symbol": "PG"}, | |
{"name": "Coca-Cola", "symbol": "KO"}, | |
{"name": "NVIDIA", "symbol": "NVDA"}, | |
{"name": "Johnson & Johnson", "symbol": "JNJ"}, | |
{"name": "Exxon Mobil", "symbol": "XOM"}, | |
{"name": "Apple", "symbol": "AAPL"}, | |
{"name": "Microsoft", "symbol": "MSFT"}, | |
{"name": "Amazon", "symbol": "AMZN"}, | |
{"name": "Google (Alphabet)", "symbol": "GOOGL"}, | |
] | |
# Fetch financial news with sentiment analysis | |
def fetch_financial_news_with_sentiment(stock_symbol=None, page_size=5, days=1): | |
try: | |
newsapi = NewsApiClient(api_key=NEWSAPI_KEY) | |
query = stock_symbol if stock_symbol else "financial news" | |
end_date = datetime.now() | |
start_date = end_date - timedelta(days=days) | |
articles = newsapi.get_everything( | |
q=query, | |
language='en', | |
from_param=start_date.strftime('%Y-%m-%d'), | |
to=end_date.strftime('%Y-%m-%d'), | |
sort_by='publishedAt', | |
page_size=page_size | |
) | |
news_results = [] | |
sentiment_results = [] | |
for article in articles.get('articles', []): | |
title = article.get('title', '[Title Unavailable]') | |
description = article.get('description', '[Description Unavailable]') | |
url = article.get('url', 'URL Unavailable') | |
sentiment = analyze_sentiment(title) if title else "Neutral" | |
news_results.append(f"Title: {title}\nDescription: {description}\nURL: {url}") | |
sentiment_results.append(f"Sentiment: {sentiment}") | |
return "\n\n".join(news_results), "\n\n".join(sentiment_results) | |
except Exception as e: | |
return f"Error fetching news: {e}", "" | |
# Perform sentiment analysis | |
def analyze_sentiment(text): | |
try: | |
analysis = TextBlob(text) | |
polarity = analysis.sentiment.polarity | |
if polarity > 0.1: | |
return "Positive" | |
elif polarity < -0.1: | |
return "Negative" | |
else: | |
return "Neutral" | |
except Exception as e: | |
return f"Error analyzing sentiment: {e}" | |
# Fetch technical data | |
def fetch_technical_data(stock_symbol): | |
try: | |
stock = yf.Ticker(stock_symbol) | |
data = stock.history(period="1y") | |
if data.empty: | |
return "No data found for this stock symbol." | |
data['RSI'] = ta.momentum.RSIIndicator(data['Close']).rsi() | |
macd = ta.trend.MACD(data['Close']) | |
data['MACD'] = macd.macd() | |
data['MACD_Signal'] = macd.macd_signal() | |
data['SMA_50'] = data['Close'].rolling(window=50).mean() | |
data['SMA_200'] = data['Close'].rolling(window=200).mean() | |
latest_technical_data = { | |
"RSI": data['RSI'].iloc[-1], | |
"MACD": data['MACD'].iloc[-1], | |
"MACD Signal": data['MACD_Signal'].iloc[-1], | |
"50 Day SMA": data['SMA_50'].iloc[-1], | |
"200 Day SMA": data['SMA_200'].iloc[-1], | |
} | |
return pd.Series(latest_technical_data).to_string() | |
except Exception as e: | |
return f"Error fetching technical data: {e}" | |
# Generate buy/hold/sell recommendation using Groq | |
def generate_recommendation(news, technical_data): | |
prompt = f"Based on the following news:\n{news}\nAnd the technical indicators:\n{technical_data}\nWhat would you recommend: Buy, Hold, or Sell? Provide a brief explanation." | |
response = groq_client.chat.completions.create( | |
model=MODEL, | |
messages=[ | |
{"role": "system", "content": "You are a financial analyst providing stock recommendations."}, | |
{"role": "user", "content": prompt} | |
], | |
max_tokens=150 | |
) | |
return response.choices[0].message.content.strip() | |
# Define Gradio interface | |
def analyze_stock(stock_symbol): | |
symbol = stock_symbol.split('(')[-1].split(')')[0] | |
news, sentiment = fetch_financial_news_with_sentiment(symbol, days=1) | |
technical_data = fetch_technical_data(symbol) | |
recommendation = generate_recommendation(news, technical_data) | |
return news, sentiment, technical_data, recommendation | |
with gr.Blocks() as demo: | |
gr.Markdown("## Financial News and Technical Analysis Tool") | |
with gr.Row(): | |
stock_input = gr.Dropdown( | |
choices=[f"{company['name']} ({company['symbol']})" for company in top_companies], | |
label="Enter Stock Symbol (currently supports only a few companies)", | |
info="Select a company from the dropdown" | |
) | |
analyze_button = gr.Button("Analyze") | |
recommendation_output = gr.Textbox(label="Recommendation", interactive=False) | |
with gr.Row(): | |
news_output = gr.Textbox(label="Financial News", interactive=False, lines=10) | |
sentiment_output = gr.Textbox(label="Sentiment Analysis", interactive=False, lines=10) | |
technical_output = gr.Textbox(label="Technical Analysis", interactive=False) | |
analyze_button.click( | |
analyze_stock, | |
inputs=[stock_input], | |
outputs=[news_output, sentiment_output, technical_output, recommendation_output] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |