File size: 6,295 Bytes
bc63b44 194731c d86b87f a1b0975 f4325ab 194731c b529f79 038610e a6cb7c8 194731c bab0771 0a86c5b d085a88 038610e 4d120d4 f9e951b a6cb7c8 194731c 0958d38 194731c 0958d38 ff67bb4 194731c 8504394 1888d7d f4325ab 0a86c5b 8504394 f4325ab 1888d7d f4325ab 1888d7d f4325ab 33de791 f4325ab 8bef298 e2f4c27 f4325ab 0a86c5b 8bef298 8504394 194731c 8504394 d86b87f 8504394 6397229 194731c c17c736 194731c c17c736 038610e 3c24b96 0314370 57918ff 3c24b96 194731c 172d00c 194731c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import spaces
import gradio as gr
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import DataCollatorForSeq2Seq
from datasets import load_dataset, concatenate_datasets, load_from_disk
import traceback
import os
from huggingface_hub import login
from peft import get_peft_model, LoraConfig
os.environ['HF_HOME'] = '/data/.huggingface'
@spaces.GPU(duration=120)
def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
try:
login(api_key.strip())
lora_config = LoraConfig(
r=16, # Rank of the low-rank adaptation
lora_alpha=32, # Scaling factor
lora_dropout=0.1, # Dropout for LoRA layers
bias="none" # Bias handling
)
# Load the dataset
dataset = load_dataset(dataset_name.strip())
# Load the model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
model = get_peft_model(model, lora_config)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Set training arguments
training_args = TrainingArguments(
output_dir='./results',
eval_strategy="steps", # Change this to steps
save_strategy='steps',
learning_rate=lr*0.00001,
per_device_train_batch_size=int(batch_size),
per_device_eval_batch_size=int(batch_size),
num_train_epochs=int(num_epochs),
weight_decay=0.01,
gradient_accumulation_steps=int(grad),
max_grad_norm = 1.0,
load_best_model_at_end=True,
metric_for_best_model="accuracy",
greater_is_better=True,
logging_dir='./logs',
logging_steps=10,
#push_to_hub=True,
hub_model_id=hub_id.strip(),
fp16=True,
#lr_scheduler_type='cosine',
save_steps=200, # Save checkpoint every 500 steps
save_total_limit=3,
)
max_length = 128
try:
tokenized_train_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset')
tokenized_test_dataset = load_from_disk(f'/data/{hub_id.strip()}_test_dataset')
# Create Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train_dataset,
eval_dataset=tokenized_test_dataset,
#callbacks=[LoggingCallback()],
)
except:
# Tokenize the dataset
def tokenize_function(examples):
# Assuming 'text' is the input and 'target' is the expected output
model_inputs = tokenizer(
examples['text'],
max_length=max_length, # Set to None for dynamic padding
padding='max_length', # Disable padding here, we will handle it later
truncation=True,
)
# Setup the decoder input IDs (shifted right)
labels = tokenizer(
examples['target'],
max_length=max_length, # Set to None for dynamic padding
padding='max_length', # Disable padding here, we will handle it later
truncation=True,
text_target=examples['target'] # Use text_target for target text
)
# Add labels to the model inputs
model_inputs["labels"] = labels["input_ids"]
return model_inputs
tokenized_datasets = dataset.map(tokenize_function, batched=True, batch_size=32)
tokenized_datasets['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset')
tokenized_datasets['test'].save_to_disk(f'/data/{hub_id.strip()}_test_dataset')
# Create Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets['train'],
eval_dataset=tokenized_datasets['test'],
#callbacks=[LoggingCallback()],
)
# Check if a checkpoint exists and load it
if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
print("Loading model from checkpoint...")
model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)
# Fine-tune the model
trainer.train()
trainer.push_to_hub(commit_message="Training complete!")
except Exception as e:
return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}"
return 'DONE!'#model
'''
# Define Gradio interface
def predict(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = model(inputs)
predictions = outputs.logits.argmax(dim=-1)
return "Positive" if predictions.item() == 1 else "Negative"
'''
# Create Gradio interface
try:
iface = gr.Interface(
fn=fine_tune_model,
inputs=[
gr.Textbox(label="Model Name (e.g., 'google/t5-efficient-tiny-nh8')"),
gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
gr.Textbox(label="HF hub to push to after training"),
gr.Textbox(label="HF API token"),
gr.Slider(minimum=1, maximum=10, value=3, label="Number of Epochs", step=1),
gr.Slider(minimum=1, maximum=16, value=1, label="Batch Size", step=1),
gr.Slider(minimum=1, maximum=1000, value=1, label="Learning Rate (e-6)", step=1),
gr.Slider(minimum=1, maximum=100, value=1, label="Gradient accumulation (e-1)", step=1),
],
outputs="text",
title="Fine-Tune Hugging Face Model",
description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
)
# Launch the interface
iface.launch()
except Exception as e:
print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")
|