File size: 6,295 Bytes
bc63b44
194731c
d86b87f
a1b0975
f4325ab
194731c
b529f79
038610e
a6cb7c8
194731c
bab0771
0a86c5b
d085a88
038610e
4d120d4
f9e951b
a6cb7c8
 
 
 
 
 
194731c
0958d38
194731c
 
0958d38
ff67bb4
194731c
 
8504394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888d7d
f4325ab
0a86c5b
 
8504394
 
 
 
 
 
 
 
 
f4325ab
 
 
 
 
 
 
 
1888d7d
f4325ab
 
 
 
 
 
 
1888d7d
f4325ab
 
 
33de791
f4325ab
 
 
8bef298
e2f4c27
f4325ab
0a86c5b
 
8bef298
8504394
 
 
 
 
 
 
 
194731c
8504394
d86b87f
 
 
 
 
8504394
6397229
194731c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c17c736
194731c
c17c736
 
 
038610e
3c24b96
0314370
57918ff
3c24b96
194731c
 
 
 
 
172d00c
 
194731c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import spaces
import gradio as gr
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import DataCollatorForSeq2Seq
from datasets import load_dataset, concatenate_datasets, load_from_disk
import traceback
import os
from huggingface_hub import login
from peft import get_peft_model, LoraConfig

os.environ['HF_HOME'] = '/data/.huggingface'

@spaces.GPU(duration=120)
def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
    try:        
        login(api_key.strip())
        lora_config = LoraConfig(
            r=16,  # Rank of the low-rank adaptation
            lora_alpha=32,  # Scaling factor
            lora_dropout=0.1,  # Dropout for LoRA layers
            bias="none"  # Bias handling
        )        
        # Load the dataset
        dataset = load_dataset(dataset_name.strip())
    
        # Load the model and tokenizer
        model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
        model = get_peft_model(model, lora_config)
        tokenizer = AutoTokenizer.from_pretrained(model_name)
    
        # Set training arguments
        training_args = TrainingArguments(
            output_dir='./results',
            eval_strategy="steps",  # Change this to steps
            save_strategy='steps',
            learning_rate=lr*0.00001,
            per_device_train_batch_size=int(batch_size),
            per_device_eval_batch_size=int(batch_size), 
            num_train_epochs=int(num_epochs),
            weight_decay=0.01,
            gradient_accumulation_steps=int(grad),
            max_grad_norm = 1.0, 
            load_best_model_at_end=True,
            metric_for_best_model="accuracy",
            greater_is_better=True,
            logging_dir='./logs',
            logging_steps=10,
            #push_to_hub=True,
            hub_model_id=hub_id.strip(),
            fp16=True,
            #lr_scheduler_type='cosine',
            save_steps=200,  # Save checkpoint every 500 steps
            save_total_limit=3, 
        )
    
        max_length = 128
        try:
            tokenized_train_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset')
            tokenized_test_dataset = load_from_disk(f'/data/{hub_id.strip()}_test_dataset')
            
            # Create Trainer
            trainer = Trainer(
                model=model,
                args=training_args,
                train_dataset=tokenized_train_dataset,
                eval_dataset=tokenized_test_dataset,
                #callbacks=[LoggingCallback()], 
            )            
        except:
            # Tokenize the dataset
            def tokenize_function(examples):
                
                # Assuming 'text' is the input and 'target' is the expected output
                model_inputs = tokenizer(
                    examples['text'], 
                    max_length=max_length,  # Set to None for dynamic padding
                    padding='max_length',     # Disable padding here, we will handle it later
                    truncation=True,
                )
            
                # Setup the decoder input IDs (shifted right)
                labels = tokenizer(
                    examples['target'], 
                    max_length=max_length,  # Set to None for dynamic padding
                    padding='max_length',     # Disable padding here, we will handle it later
                    truncation=True,
                    text_target=examples['target']  # Use text_target for target text
                )
            
                # Add labels to the model inputs
                model_inputs["labels"] = labels["input_ids"]
                return model_inputs
        
            tokenized_datasets = dataset.map(tokenize_function, batched=True, batch_size=32)
            
            tokenized_datasets['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset')
            tokenized_datasets['test'].save_to_disk(f'/data/{hub_id.strip()}_test_dataset')
        
            # Create Trainer
            trainer = Trainer(
                model=model,
                args=training_args,
                train_dataset=tokenized_datasets['train'],
                eval_dataset=tokenized_datasets['test'],
                #callbacks=[LoggingCallback()], 
            )            
    

        # Check if a checkpoint exists and load it
        if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
            print("Loading model from checkpoint...")
            model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)
            


        # Fine-tune the model
        trainer.train()
        trainer.push_to_hub(commit_message="Training complete!")
    except Exception as e:
        return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}"
    return 'DONE!'#model
'''
# Define Gradio interface
def predict(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    outputs = model(inputs)
    predictions = outputs.logits.argmax(dim=-1)
    return "Positive" if predictions.item() == 1 else "Negative"
'''
# Create Gradio interface
try:
    
    iface = gr.Interface(
        fn=fine_tune_model,
        inputs=[
            gr.Textbox(label="Model Name (e.g., 'google/t5-efficient-tiny-nh8')"),
            gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
            gr.Textbox(label="HF hub to push to after training"),
            gr.Textbox(label="HF API token"),
            gr.Slider(minimum=1, maximum=10, value=3, label="Number of Epochs", step=1),
            gr.Slider(minimum=1, maximum=16, value=1, label="Batch Size", step=1),
            gr.Slider(minimum=1, maximum=1000, value=1, label="Learning Rate (e-6)", step=1),
            gr.Slider(minimum=1, maximum=100, value=1, label="Gradient accumulation (e-1)", step=1), 
        ],
        outputs="text",
        title="Fine-Tune Hugging Face Model",
        description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
    )
    # Launch the interface
    iface.launch()    
except Exception as e:
    print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")