File size: 2,570 Bytes
169e11c
 
 
 
 
e0452e0
169e11c
 
 
 
 
f6bb7f6
 
169e11c
 
 
e0452e0
169e11c
 
e0452e0
169e11c
 
e0452e0
 
169e11c
e0452e0
169e11c
 
 
 
e0452e0
d32b68f
169e11c
 
f6bb7f6
169e11c
e0452e0
169e11c
 
 
 
e0452e0
169e11c
 
 
f6bb7f6
169e11c
e0452e0
169e11c
 
 
 
e0452e0
b0c3cbd
f6bb7f6
 
169e11c
e0452e0
 
169e11c
e0452e0
 
169e11c
 
f6bb7f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os.path as osp
import gradio as gr
import torch
import logging
import torchvision
from torchvision.models.detection.faster_rcnn import fasterrcnn_resnet50_fpn
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from src.detection.graph_utils import add_bbox
from src.detection.vision import presets
logging.getLogger('PIL').setLevel(logging.CRITICAL)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def load_model(baseline: bool = False):
    if baseline:
        model = fasterrcnn_resnet50_fpn(
            weights="DEFAULT")
    else:
        model = fasterrcnn_resnet50_fpn()
        in_features = model.roi_heads.box_predictor.cls_score.in_features
        model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 2)
        checkpoint = torch.load(
            "model_split_3_FT_MOT17.pth", map_location="cpu")
        model.load_state_dict(checkpoint["model"])
    model.to(device)
    model.eval()
    return model


def frcnn_motsynth(image):
    model = load_model(baseline=True)
    transformEval = presets.DetectionPresetEval()
    image_tensor = transformEval(image, None)[0]
    image_tensor = image_tensor.to(device)
    prediction = model([image_tensor])[0]
    image_w_bbox = add_bbox(image_tensor, prediction, 0.80)
    torchvision.io.write_png(image_w_bbox, "custom_out.png")
    return "custom_out.png"


def frcnn_coco(image):
    model = load_model(baseline=True)
    transformEval = presets.DetectionPresetEval()
    image_tensor = transformEval(image, None)[0]
    image_tensor = image_tensor.to(device)
    prediction = model([image_tensor])[0]
    image_w_bbox = add_bbox(image_tensor, prediction, 0.80)
    torchvision.io.write_png(image_w_bbox, "baseline_out.png")
    return "baseline_out.png"


title = "Domain shift adaption on pedestrian detection with Faster R-CNN"
description = "School in AI: Deep Learning, Vision and Language for Industry - second edition final project work by Matteo Sirri"
examples = ["001.jpg", "002.jpg", "003.jpg",
            "004.jpg", "005.jpg", "006.jpg", "007.jpg", ]

io_baseline = gr.Interface(frcnn_coco, gr.Image(type="pil"), gr.Image(
    type="file", shape=(1920, 1080), label="Baseline Model trained on COCO + FT on MOT17"))

io_custom = gr.Interface(frcnn_motsynth, gr.Image(type="pil"), gr.Image(
    type="file", shape=(1920, 1080), label="Faster R-CNN trained on MOTSynth + FT on MOT17"))

gr.Parallel(io_baseline, io_custom, title=title,
            description=description, examples=examples, theme="default").launch(enable_queue=True)