skanderovitch's picture
Create app.py
b1f21a7 verified
raw
history blame
6.03 kB
import streamlit as st
import streamlit.components.v1 as components
import pandas as pd
import os
import re
import numpy as np
from glob import glob
import lightgbm as lgb
import pickle
os.environ['S3_BUCKET'] = 'seriouslyusers'
os.environ['S3_BUCKET'] = "seriouslytestfaces"
import io
def get_s3_url(key):
url = 'https://s3.amazonaws.com/%s/%s' % (os.environ['S3_BUCKET'],key.replace(' ','+'))
return url
embeddings = pd.read_parquet('./embeddings.parquet')
def create_dir(directory):
if not os.path.exists(directory):
os.makedirs(directory)
def setup_user():
create_dir(f'./users/{st.session_state.name}')
create_dir(f'./users/{st.session_state.name}/likes')
create_dir(f'./users/{st.session_state.name}/models')
def get_filename():
if 'preds' in st.session_state:
p = st.session_state.preds**4
p /= sum(p)
choice = np.random.choice(range(len(p)),p=p)
st.session_state.pred = st.session_state.preds[choice]
return embeddings.index[choice]
st.toast('Random for now')
return np.random.choice(embeddings.index)
st.title('What does attractive mean to you?')
st.session_state.name = st.text_input(label='Invent a unique alias (and remember it)')
def liked(filename,like):
filename = f'./users/{st.session_state.name}/likes/' + filename.split('/')[-1] + '.' + str(like)[:1]
open(filename, 'a').close()
def get_train_data():
clean = lambda file : file.replace('\\','/').split('/')[-1][:-2]
true_files = list(map(clean,glob(f'./users/{st.session_state.name}/likes/*.T')))
false_files = list(map(clean,glob(f'./users/{st.session_state.name}/likes/*.F')))
true_embeddings = embeddings.loc[true_files].values
false_embeddings = embeddings.loc[false_files].values
st.toast(f'Found {len(true_files)} positives and {len(false_files)} negatives')
labels = np.array([1 for _ in true_embeddings] + [0 for _ in false_embeddings])
st.session_state.labels = pd.Series(labels,index=true_files+false_files).rename('label')
X = np.vstack([true_embeddings,false_embeddings])
return X,labels
def train_model(X,labels):
if len(labels) < 30:
st.toast('Not enough data')
return
if labels.mean() > 0.9:
st.toast('Not enough negatives')
return
if labels.mean() < 0.1:
st.toast('Not enough positives')
return
train_data = lgb.Dataset(X, label=labels)
num_round = 10
param = {'num_leaves':10, 'objective': 'binary', 'metric' : 'auc'}
bst = lgb.train(param, train_data, num_round)
in_sample_preds = bst.predict(X)
in_sample_score = np.corrcoef([in_sample_preds,np.array(labels)])[0][1]
st.session_state.score = in_sample_score
st.toast(f'Score = {in_sample_score:.1%}')
return bst
def rank_candidates(bst):
return bst.predict(embeddings.values)
def train():
X,labels = get_train_data()
bst = train_model(X,labels)
if bst is None:
return
filename = f'./users/{st.session_state.name}/models/model.txt'
bst.save_model(filename)
preds = rank_candidates(bst)
st.session_state.preds = preds
def cleanup():
files = glob(f'./users/{st.session_state.name}/likes/*')
for f in files:
os.remove(f)
if 'preds' in st.session_state:
del st.session_state.preds
del st.session_state.pred
def get_extremes(n=4):
if 'preds' in st.session_state:
preds = pd.Series(st.session_state.preds,index=embeddings.index).sort_values(ascending=False)
return preds.iloc[:n].to_dict(),preds.iloc[-n:].to_dict()
def get_strange(n=4):
if 'labels' in st.session_state:
labels = st.session_state.labels
preds = pd.Series(st.session_state.preds,index=embeddings.index).loc[labels.index].rename('pred')
data = pd.concat([labels, preds],axis=1)
st.toast(data.columns)
data['diff'] = data['pred'] - data['label']
data = data.sort_values('diff')['diff']
return data.iloc[:n].to_dict(),data.iloc[-n:].to_dict()
if st.session_state.name:
st.session_state.name = re.sub(r'[^A-Za-z0-9 ]+', '', st.session_state.name)[:100]
setup_user()
st.subheader(f"Let's start {st.session_state.name}")
filename = get_filename()
cc1, cc2 = st.columns(2)
c1,c2 = cc1.columns(2)
c1.button('Why not', on_click=liked, args=[filename,True])
c2.button('Nope', on_click=liked, args=[filename,False])
key = get_s3_url(filename)
cc1.image(key, width = 400)
c1,c2 = cc2.columns(2)
c1.button('Train',on_click=train,args=[])
c2.button('Start over',on_click=cleanup,args=[])
if 'preds' in st.session_state:
cc1.write('Here is our guess')
cc1.metric("Probability you will like", f'{st.session_state.pred:.1%}')
best,worst = get_extremes()
cc2.subheader('Predicted best')
cs = cc2.columns(len(best))
for c,(file,pred) in zip(cs,best.items()):
c.metric("", f'{pred:.0%}')
c.image(get_s3_url(file), width = 100)
cc2.subheader('Predicted worst')
cs = cc2.columns(len(worst))
for c,(file,pred) in zip(cs,worst.items()):
c.metric("", f'{pred:.0%}')
c.image(get_s3_url(file), width = 100)
cc1.metric("Overall model accuracy", f'{st.session_state.score:.0%}')
cc1.subheader('Where you confused me')
best,worst = get_strange()
cc1.write("You didn't like my picks")
cs = cc1.columns(len(best))
for c,(file,pred) in zip(cs,best.items()):
c.metric("", "",f'{pred:.0%}')
c.image(get_s3_url(file), width = 100)
cc1.write("You liked these more than I thought")
cs = cc1.columns(len(worst))
for c,(file,pred) in zip(cs,worst.items()):
c.metric("","", f'{pred:.0%}')
c.image(get_s3_url(file), width = 100)