File size: 35,631 Bytes
475b0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224556e
 
 
475b0b9
 
 
 
94b0142
 
7a61b58
 
94b0142
7a61b58
 
94b0142
 
 
 
7a61b58
 
94b0142
 
 
 
 
 
 
7a61b58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b0142
7a61b58
 
 
 
94b0142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a61b58
94b0142
7a61b58
 
 
 
 
 
 
 
 
 
 
 
94b0142
 
7a61b58
ecf3eb5
7a61b58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b0142
7a61b58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af923b7
7a61b58
 
 
 
 
 
 
 
 
 
 
 
 
af923b7
7a61b58
 
 
af923b7
7a61b58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af923b7
7a61b58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
475b0b9
 
 
 
 
 
665c478
 
 
475b0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b0142
224556e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b0142
224556e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b0142
224556e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b0142
475b0b9
 
94b0142
 
475b0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b0142
224556e
 
 
94b0142
224556e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
475b0b9
 
224556e
 
 
 
 
 
 
 
 
 
94b0142
224556e
 
 
 
 
 
94b0142
475b0b9
 
 
 
 
 
 
 
 
224556e
475b0b9
 
 
 
 
 
 
 
 
 
224556e
475b0b9
 
 
 
 
 
 
ef20fe6
475b0b9
 
224556e
475b0b9
 
224556e
475b0b9
 
 
 
 
 
 
 
 
 
 
 
224556e
475b0b9
 
 
94b0142
 
 
475b0b9
94b0142
224556e
475b0b9
 
 
 
 
 
 
 
abca105
475b0b9
 
abca105
475b0b9
94b0142
224556e
475b0b9
 
 
 
 
 
 
 
abca105
475b0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224556e
94b0142
224556e
475b0b9
 
 
 
 
 
 
 
94b0142
475b0b9
 
 
 
94b0142
224556e
475b0b9
 
 
 
 
 
 
 
94b0142
475b0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224556e
475b0b9
 
 
 
 
 
 
 
224556e
94b0142
224556e
475b0b9
 
 
 
 
 
 
 
94b0142
475b0b9
 
94b0142
475b0b9
94b0142
224556e
475b0b9
 
 
 
 
 
 
 
94b0142
475b0b9
94b0142
224556e
475b0b9
 
 
 
 
 
 
 
94b0142
224556e
475b0b9
94b0142
224556e
94b0142
224556e
475b0b9
 
 
 
 
 
 
 
94b0142
475b0b9
 
 
 
 
 
e5a6062
 
 
 
 
 
 
 
 
 
 
 
 
 
94b0142
 
 
 
 
 
 
 
 
 
 
 
 
e5a6062
94b0142
ef20fe6
94b0142
ef20fe6
 
 
 
 
 
 
e5a6062
 
 
ef20fe6
 
 
 
 
 
 
 
 
 
 
 
f238ccb
 
453f545
f238ccb
 
 
 
 
 
 
 
 
 
 
ef20fe6
 
f238ccb
453f545
f238ccb
 
 
 
 
 
 
 
 
 
 
94b0142
e5a6062
 
 
e0e2a5b
94b0142
475b0b9
 
 
 
f238ccb
475b0b9
f238ccb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
import argparse
import io
import os
from time import time
from typing import List

import tempfile
import uvicorn
from fastapi import Depends, FastAPI, File, HTTPException, Query, Request, UploadFile, Body, Form
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, RedirectResponse, StreamingResponse
from PIL import Image
from pydantic import BaseModel, field_validator
from pydantic_settings import BaseSettings
from slowapi import Limiter
from slowapi.util import get_remote_address
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from IndicTransToolkit import IndicProcessor

from logging_config import logger
from tts_config import SPEED, ResponseFormat, config as tts_config
from gemma_llm import LLMManager
# from auth import get_api_key, settings as auth_settings

import time
from contextlib import asynccontextmanager
from typing import Annotated, Any, OrderedDict, List
import zipfile
import soundfile as sf
import torch
from fastapi import Body, FastAPI, HTTPException, Response
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
import numpy as np
from config import SPEED, ResponseFormat, config
from logger import logger
import uvicorn
import argparse
from fastapi.responses import RedirectResponse, StreamingResponse
import io
import os
import logging

# Device setup
if torch.cuda.is_available():
    device = "cuda:0"
    logger.info("GPU will be used for inference")
else:
    device = "cpu"
    logger.info("CPU will be used for inference")
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32

# Check CUDA availability and version
cuda_available = torch.cuda.is_available()
cuda_version = torch.version.cuda if cuda_available else None

if torch.cuda.is_available():
    device_idx = torch.cuda.current_device()
    capability = torch.cuda.get_device_capability(device_idx)
    compute_capability_float = float(f"{capability[0]}.{capability[1]}")
    print(f"CUDA version: {cuda_version}")
    print(f"CUDA Compute Capability: {compute_capability_float}")
else:
    print("CUDA is not available on this system.")

class TTSModelManager:
    def __init__(self):
        self.model_tokenizer: OrderedDict[
            str, tuple[ParlerTTSForConditionalGeneration, AutoTokenizer, AutoTokenizer]
        ] = OrderedDict()
        self.max_length = 50

    def load_model(
        self, model_name: str
    ) -> tuple[ParlerTTSForConditionalGeneration, AutoTokenizer, AutoTokenizer]:
        logger.debug(f"Loading {model_name}...")
        start = time.perf_counter()
        
        model_name = "ai4bharat/indic-parler-tts"
        attn_implementation = "flash_attention_2"
        
        model = ParlerTTSForConditionalGeneration.from_pretrained(
            model_name,
            attn_implementation=attn_implementation
        ).to(device, dtype=torch_dtype)

        tokenizer = AutoTokenizer.from_pretrained(model_name)
        description_tokenizer = AutoTokenizer.from_pretrained(model.config.text_encoder._name_or_path)

        # Set pad tokens
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
        if description_tokenizer.pad_token is None:
            description_tokenizer.pad_token = description_tokenizer.eos_token

        # TODO - temporary disable -torch.compile 
        '''
        # Update model configuration
        model.config.pad_token_id = tokenizer.pad_token_id
        # Update for deprecation: use max_batch_size instead of batch_size
        if hasattr(model.generation_config.cache_config, 'max_batch_size'):
            model.generation_config.cache_config.max_batch_size = 1
        model.generation_config.cache_implementation = "static"
        '''
        # Compile the model
        compile_mode = "default"
        #compile_mode = "reduce-overhead"
        
        model.forward = torch.compile(model.forward, mode=compile_mode)

        # Warmup
        warmup_inputs = tokenizer("Warmup text for compilation", 
                                return_tensors="pt", 
                                padding="max_length", 
                                max_length=self.max_length).to(device)
        
        model_kwargs = {
            "input_ids": warmup_inputs["input_ids"],
            "attention_mask": warmup_inputs["attention_mask"],
            "prompt_input_ids": warmup_inputs["input_ids"],
            "prompt_attention_mask": warmup_inputs["attention_mask"],
        }
        
        n_steps = 1 if compile_mode == "default" else 2
        for _ in range(n_steps):
            _ = model.generate(**model_kwargs)
        
        logger.info(
            f"Loaded {model_name} with Flash Attention and compilation in {time.perf_counter() - start:.2f} seconds"
        )
        return model, tokenizer, description_tokenizer

    def get_or_load_model(
        self, model_name: str
    ) -> tuple[ParlerTTSForConditionalGeneration, AutoTokenizer, AutoTokenizer]:
        if model_name not in self.model_tokenizer:
            logger.info(f"Model {model_name} isn't already loaded")
            if len(self.model_tokenizer) == config.max_models:
                logger.info("Unloading the oldest loaded model")
                del self.model_tokenizer[next(iter(self.model_tokenizer))]
            self.model_tokenizer[model_name] = self.load_model(model_name)
        return self.model_tokenizer[model_name]

tts_model_manager = TTSModelManager()

@asynccontextmanager
async def lifespan(_: FastAPI):
    if not config.lazy_load_model:
        tts_model_manager.get_or_load_model(config.model)
    yield

app = FastAPI(
    title="Dhwani API",
    description="AI Chat API supporting Indian languages",
    version="1.0.0",
    redirect_slashes=False,
    lifespan=lifespan
)

def chunk_text(text, chunk_size):
    words = text.split()
    chunks = []
    for i in range(0, len(words), chunk_size):
        chunks.append(' '.join(words[i:i + chunk_size]))
    return chunks

@app.post("/v1/audio/speech")
async def generate_audio(
    input: Annotated[str, Body()] = config.input,
    voice: Annotated[str, Body()] = config.voice,
    model: Annotated[str, Body()] = config.model,
    response_format: Annotated[ResponseFormat, Body(include_in_schema=False)] = config.response_format,
    speed: Annotated[float, Body(include_in_schema=False)] = SPEED,
) -> StreamingResponse:
    tts, tokenizer, description_tokenizer = tts_model_manager.get_or_load_model(model)
    if speed != SPEED:
        logger.warning(
            "Specifying speed isn't supported by this model. Audio will be generated with the default speed"
        )
    start = time.perf_counter()

    chunk_size = 15
    all_chunks = chunk_text(input, chunk_size)

    if len(all_chunks) <= chunk_size:
        desc_inputs = description_tokenizer(voice,
                                          return_tensors="pt",
                                          padding="max_length",
                                          max_length=tts_model_manager.max_length).to(device)
        prompt_inputs = tokenizer(input,
                                return_tensors="pt",
                                padding="max_length",
                                max_length=tts_model_manager.max_length).to(device)
        
        input_ids = desc_inputs["input_ids"]
        attention_mask = desc_inputs["attention_mask"]
        prompt_input_ids = prompt_inputs["input_ids"]
        prompt_attention_mask = prompt_inputs["attention_mask"]

        generation = tts.generate(
            input_ids=input_ids,
            prompt_input_ids=prompt_input_ids,
            attention_mask=attention_mask,
            prompt_attention_mask=prompt_attention_mask
        ).to(torch.float32)

        audio_arr = generation.cpu().float().numpy().squeeze()
    else:
        all_descriptions = [voice] * len(all_chunks)
        description_inputs = description_tokenizer(all_descriptions,
                                                 return_tensors="pt",
                                                 padding=True).to(device)
        prompts = tokenizer(all_chunks,
                          return_tensors="pt",
                          padding=True).to(device)

        set_seed(0)
        generation = tts.generate(
            input_ids=description_inputs["input_ids"],
            attention_mask=description_inputs["attention_mask"],
            prompt_input_ids=prompts["input_ids"],
            prompt_attention_mask=prompts["attention_mask"],
            do_sample=True,
            return_dict_in_generate=True,
        )
        
        chunk_audios = []
        for i, audio in enumerate(generation.sequences):
            audio_data = audio[:generation.audios_length[i]].cpu().float().numpy().squeeze()
            chunk_audios.append(audio_data)
        audio_arr = np.concatenate(chunk_audios)

    device_str = str(device)
    logger.info(
        f"Took {time.perf_counter() - start:.2f} seconds to generate audio for {len(input.split())} words using {device_str.upper()}"
    )

    audio_buffer = io.BytesIO()
    sf.write(audio_buffer, audio_arr, tts.config.sampling_rate, format=response_format)
    audio_buffer.seek(0)

    return StreamingResponse(audio_buffer, media_type=f"audio/{response_format}")

def create_in_memory_zip(file_data):
    in_memory_zip = io.BytesIO()
    with zipfile.ZipFile(in_memory_zip, 'w') as zipf:
        for file_name, data in file_data.items():
            zipf.writestr(file_name, data)
    in_memory_zip.seek(0)
    return in_memory_zip

@app.post("/v1/audio/speech_batch")
async def generate_audio_batch(
    input: Annotated[List[str], Body()] = config.input,
    voice: Annotated[List[str], Body()] = config.voice,
    model: Annotated[str, Body(include_in_schema=False)] = config.model,
    response_format: Annotated[ResponseFormat, Body()] = config.response_format,
    speed: Annotated[float, Body(include_in_schema=False)] = SPEED,
) -> StreamingResponse:
    tts, tokenizer, description_tokenizer = tts_model_manager.get_or_load_model(model)
    if speed != SPEED:
        logger.warning(
            "Specifying speed isn't supported by this model. Audio will be generated with the default speed"
        )
    start = time.perf_counter()

    chunk_size = 15
    all_chunks = []
    all_descriptions = []
    for i, text in enumerate(input):
        chunks = chunk_text(text, chunk_size)
        all_chunks.extend(chunks)
        all_descriptions.extend([voice[i]] * len(chunks))

    description_inputs = description_tokenizer(all_descriptions,
                                             return_tensors="pt",
                                             padding=True).to(device)
    prompts = tokenizer(all_chunks,
                       return_tensors="pt",
                       padding=True).to(device)

    set_seed(0)
    generation = tts.generate(
        input_ids=description_inputs["input_ids"],
        attention_mask=description_inputs["attention_mask"],
        prompt_input_ids=prompts["input_ids"],
        prompt_attention_mask=prompts["attention_mask"],
        do_sample=True,
        return_dict_in_generate=True,
    )

    audio_outputs = []
    current_index = 0
    for i, text in enumerate(input):
        chunks = chunk_text(text, chunk_size)
        chunk_audios = []
        for j in range(len(chunks)):
            audio_arr = generation.sequences[current_index][:generation.audios_length[current_index]].cpu().float().numpy().squeeze()
            chunk_audios.append(audio_arr)
            current_index += 1
        combined_audio = np.concatenate(chunk_audios)
        audio_outputs.append(combined_audio)

    file_data = {}
    for i, audio in enumerate(audio_outputs):
        file_name = f"out_{i}.{response_format}"
        audio_bytes = io.BytesIO()
        sf.write(audio_bytes, audio, tts.config.sampling_rate, format=response_format)
        audio_bytes.seek(0)
        file_data[file_name] = audio_bytes.read()

    in_memory_zip = create_in_memory_zip(file_data)

    logger.info(
        f"Took {time.perf_counter() - start:.2f} seconds to generate audio"
    )

    return StreamingResponse(in_memory_zip, media_type="application/zip")

# Supported language codes
SUPPORTED_LANGUAGES = {
    "asm_Beng", "kas_Arab", "pan_Guru", "ben_Beng", "kas_Deva", "san_Deva",
    "brx_Deva", "mai_Deva", "sat_Olck", "doi_Deva", "mal_Mlym", "snd_Arab",
    "eng_Latn", "mar_Deva", "snd_Deva", "gom_Deva", "mni_Beng", "tam_Taml",
    "guj_Gujr", "mni_Mtei", "tel_Telu", "hin_Deva", "npi_Deva", "urd_Arab",
    "kan_Knda", "ory_Orya",
    "deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn",
    "por_Latn", "rus_Cyrl", "pol_Latn"
}

class Settings(BaseSettings):
    llm_model_name: str = "google/gemma-3-4b-it"
    max_tokens: int = 512
    host: str = "0.0.0.0"
    port: int = 7860
    chat_rate_limit: str = "100/minute"
    speech_rate_limit: str = "5/minute"

    @field_validator("chat_rate_limit", "speech_rate_limit")
    def validate_rate_limit(cls, v):
        if not v.count("/") == 1 or not v.split("/")[0].isdigit():
            raise ValueError("Rate limit must be in format 'number/period' (e.g., '5/minute')")
        return v

    class Config:
        env_file = ".env"

settings = Settings()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=False,
    allow_methods=["*"],
    allow_headers=["*"],
)

limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter

llm_manager = LLMManager(settings.llm_model_name)

# Translation Manager and Model Manager
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

class TranslateManager:
    def __init__(self, src_lang, tgt_lang, device_type=DEVICE, use_distilled=True):
        self.device_type = device_type
        self.tokenizer, self.model = self.initialize_model(src_lang, tgt_lang, use_distilled)

    def initialize_model(self, src_lang, tgt_lang, use_distilled):
        if src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
            model_name = "ai4bharat/indictrans2-en-indic-dist-200M" if use_distilled else "ai4bharat/indictrans2-en-indic-1B"
        elif not src_lang.startswith("eng") and tgt_lang.startswith("eng"):
            model_name = "ai4bharat/indictrans2-indic-en-dist-200M" if use_distilled else "ai4bharat/indictrans2-indic-en-1B"
        elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
            model_name = "ai4bharat/indictrans2-indic-indic-dist-320M" if use_distilled else "ai4bharat/indictrans2-indic-indic-1B"
        else:
            raise ValueError("Invalid language combination: English to English translation is not supported.")

        tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
        model = AutoModelForSeq2SeqLM.from_pretrained(
            model_name,
            trust_remote_code=True,
            torch_dtype=torch.float16,
            attn_implementation="flash_attention_2"
        ).to(self.device_type)
        return tokenizer, model

class ModelManager:
    def __init__(self, device_type=DEVICE, use_distilled=True, is_lazy_loading=False):
        self.models: dict[str, TranslateManager] = {}
        self.device_type = device_type
        self.use_distilled = use_distilled
        self.is_lazy_loading = is_lazy_loading
        if not is_lazy_loading:
            self.preload_models()

    def preload_models(self):
        self.models['eng_indic'] = TranslateManager('eng_Latn', 'kan_Knda', self.device_type, self.use_distilled)
        self.models['indic_eng'] = TranslateManager('kan_Knda', 'eng_Latn', self.device_type, self.use_distilled)
        self.models['indic_indic'] = TranslateManager('kan_Knda', 'hin_Deva', self.device_type, self.use_distilled)

    def get_model(self, src_lang, tgt_lang) -> TranslateManager:
        if src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
            key = 'eng_indic'
        elif not src_lang.startswith("eng") and tgt_lang.startswith("eng"):
            key = 'indic_eng'
        elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
            key = 'indic_indic'
        else:
            raise ValueError("Invalid language combination: English to English translation is not supported.")

        if key not in self.models:
            if self.is_lazy_loading:
                if key == 'eng_indic':
                    self.models[key] = TranslateManager('eng_Latn', 'kan_Knda', self.device_type, self.use_distilled)
                elif key == 'indic_eng':
                    self.models[key] = TranslateManager('kan_Knda', 'eng_Latn', self.device_type, self.use_distilled)
                elif key == 'indic_indic':
                    self.models[key] = TranslateManager('kan_Knda', 'hin_Deva', self.device_type, self.use_distilled)
            else:
                raise ValueError(f"Model for {key} is not preloaded and lazy loading is disabled.")
        return self.models[key]

ip = IndicProcessor(inference=True)
model_manager = ModelManager()

# Pydantic Models
class ChatRequest(BaseModel):
    prompt: str
    src_lang: str = "kan_Knda"  # Default to Kannada
    tgt_lang: str = "kan_Knda"  # Default to Kannada

    @field_validator("prompt")
    def prompt_must_be_valid(cls, v):
        if len(v) > 1000:
            raise ValueError("Prompt cannot exceed 1000 characters")
        return v.strip()

    @field_validator("src_lang", "tgt_lang")
    def validate_language(cls, v):
        if v not in SUPPORTED_LANGUAGES:
            raise ValueError(f"Unsupported language code: {v}. Supported codes: {', '.join(SUPPORTED_LANGUAGES)}")
        return v

class ChatResponse(BaseModel):
    response: str

class TranslationRequest(BaseModel):
    sentences: List[str]
    src_lang: str
    tgt_lang: str

class TranslationResponse(BaseModel):
    translations: List[str]

# Dependency to get TranslateManager
def get_translate_manager(src_lang: str, tgt_lang: str) -> TranslateManager:
    return model_manager.get_model(src_lang, tgt_lang)

# Internal Translation Endpoint
@app.post("/translate", response_model=TranslationResponse)
async def translate(request: TranslationRequest, translate_manager: TranslateManager = Depends(get_translate_manager)):
    input_sentences = request.sentences
    src_lang = request.src_lang
    tgt_lang = request.tgt_lang

    if not input_sentences:
        raise HTTPException(status_code=400, detail="Input sentences are required")

    batch = ip.preprocess_batch(input_sentences, src_lang=src_lang, tgt_lang=tgt_lang)

    inputs = translate_manager.tokenizer(
        batch,
        truncation=True,
        padding="longest",
        return_tensors="pt",
        return_attention_mask=True,
    ).to(translate_manager.device_type)

    with torch.no_grad():
        generated_tokens = translate_manager.model.generate(
            **inputs,
            use_cache=True,
            min_length=0,
            max_length=256,
            num_beams=5,
            num_return_sequences=1,
        )

    with translate_manager.tokenizer.as_target_tokenizer():
        generated_tokens = translate_manager.tokenizer.batch_decode(
            generated_tokens.detach().cpu().tolist(),
            skip_special_tokens=True,
            clean_up_tokenization_spaces=True,
        )

    translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
    return TranslationResponse(translations=translations)

# Helper function to perform internal translation
async def perform_internal_translation(sentences: List[str], src_lang: str, tgt_lang: str) -> List[str]:
    translate_manager = model_manager.get_model(src_lang, tgt_lang)
    request = TranslationRequest(sentences=sentences, src_lang=src_lang, tgt_lang=tgt_lang)
    response = await translate(request, translate_manager)
    return response.translations

# API Endpoints
@app.get("/v1/health")
async def health_check():
    return {"status": "healthy", "model": settings.llm_model_name}

@app.get("/")
async def home():
    return RedirectResponse(url="/docs")

@app.post("/v1/unload_all_models")
async def unload_all_models():
    try:
        logger.info("Starting to unload all models...")
        llm_manager.unload()
        logger.info("All models unloaded successfully")
        return {"status": "success", "message": "All models unloaded"}
    except Exception as e:
        logger.error(f"Error unloading models: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Failed to unload models: {str(e)}")

@app.post("/v1/load_all_models")
async def load_all_models():
    try:
        logger.info("Starting to load all models...")
        llm_manager.load()
        logger.info("All models loaded successfully")
        return {"status": "success", "message": "All models loaded"}
    except Exception as e:
        logger.error(f"Error loading models: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Failed to unload models: {str(e)}")

@app.post("/v1/translate", response_model=TranslationResponse)
async def translate_endpoint(request: TranslationRequest):
    logger.info(f"Received translation request: {request.dict()}")
    try:
        translations = await perform_internal_translation(
            sentences=request.sentences,
            src_lang=request.src_lang,
            tgt_lang=request.tgt_lang
        )
        logger.info(f"Translation successful: {translations}")
        return TranslationResponse(translations=translations)
    except Exception as e:
        logger.error(f"Unexpected error during translation: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")

@app.post("/v1/chat", response_model=ChatResponse)
@limiter.limit(settings.chat_rate_limit)
async def chat(request: Request, chat_request: ChatRequest):
    if not chat_request.prompt:
        raise HTTPException(status_code=400, detail="Prompt cannot be empty")
    logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}, tgt_lang: {chat_request.tgt_lang}")
    
    EUROPEAN_LANGUAGES = {"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn", "por_Latn", "rus_Cyrl", "pol_Latn"}
    
    try:
        if chat_request.src_lang != "eng_Latn" and chat_request.src_lang not in EUROPEAN_LANGUAGES:
            translated_prompt = await perform_internal_translation(
                sentences=[chat_request.prompt],
                src_lang=chat_request.src_lang,
                tgt_lang="eng_Latn"
            )
            prompt_to_process = translated_prompt[0]
            logger.info(f"Translated prompt to English: {prompt_to_process}")
        else:
            prompt_to_process = chat_request.prompt
            logger.info("Prompt in English or European language, no translation needed")

        response = await llm_manager.generate(prompt_to_process, settings.max_tokens)
        logger.info(f"Generated response: {response}")

        if chat_request.tgt_lang != "eng_Latn" and chat_request.tgt_lang not in EUROPEAN_LANGUAGES:
            translated_response = await perform_internal_translation(
                sentences=[response],
                src_lang="eng_Latn",
                tgt_lang=chat_request.tgt_lang
            )
            final_response = translated_response[0]
            logger.info(f"Translated response to {chat_request.tgt_lang}: {final_response}")
        else:
            final_response = response
            logger.info(f"Response in {chat_request.tgt_lang}, no translation needed")

        return ChatResponse(response=final_response)
    except Exception as e:
        logger.error(f"Error processing request: {str(e)}")
        raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")

@app.post("/v1/visual_query/")
async def visual_query(
    file: UploadFile = File(...),
    query: str = Body(...),
    src_lang: str = Query("kan_Knda", enum=list(SUPPORTED_LANGUAGES)),
    tgt_lang: str = Query("kan_Knda", enum=list(SUPPORTED_LANGUAGES)),
):
    try:
        image = Image.open(file.file)
        if image.size == (0, 0):
            raise HTTPException(status_code=400, detail="Uploaded image is empty or invalid")

        if src_lang != "eng_Latn":
            translated_query = await perform_internal_translation(
                sentences=[query],
                src_lang=src_lang,
                tgt_lang="eng_Latn"
            )
            query_to_process = translated_query[0]
            logger.info(f"Translated query to English: {query_to_process}")
        else:
            query_to_process = query
            logger.info("Query already in English, no translation needed")

        answer = await llm_manager.vision_query(image, query_to_process)
        logger.info(f"Generated English answer: {answer}")

        if tgt_lang != "eng_Latn":
            translated_answer = await perform_internal_translation(
                sentences=[answer],
                src_lang="eng_Latn",
                tgt_lang=tgt_lang
            )
            final_answer = translated_answer[0]
            logger.info(f"Translated answer to {tgt_lang}: {final_answer}")
        else:
            final_answer = answer
            logger.info("Answer kept in English, no translation needed")

        return {"answer": final_answer}
    except Exception as e:
        logger.error(f"Error processing request: {str(e)}")
        raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")

@app.post("/v1/chat_v2", response_model=ChatResponse)
@limiter.limit(settings.chat_rate_limit)
async def chat_v2(
    request: Request,
    prompt: str = Form(...),
    image: UploadFile = File(default=None),
    src_lang: str = Form("kan_Knda"),
    tgt_lang: str = Form("kan_Knda"),
):
    if not prompt:
        raise HTTPException(status_code=400, detail="Prompt cannot be empty")
    if src_lang not in SUPPORTED_LANGUAGES or tgt_lang not in SUPPORTED_LANGUAGES:
        raise HTTPException(status_code=400, detail=f"Unsupported language code. Supported codes: {', '.join(SUPPORTED_LANGUAGES)}")

    logger.info(f"Received prompt: {prompt}, src_lang: {src_lang}, tgt_lang: {tgt_lang}, Image provided: {image is not None}")

    try:
        if image:
            image_data = await image.read()
            if not image_data:
                raise HTTPException(status_code=400, detail="Uploaded image is empty")
            img = Image.open(io.BytesIO(image_data))

            if src_lang != "eng_Latn":
                translated_prompt = await perform_internal_translation(
                    sentences=[prompt],
                    src_lang=src_lang,
                    tgt_lang="eng_Latn"
                )
                prompt_to_process = translated_prompt[0]
                logger.info(f"Translated prompt to English: {prompt_to_process}")
            else:
                prompt_to_process = prompt
                logger.info("Prompt already in English, no translation needed")

            decoded = await llm_manager.chat_v2(img, prompt_to_process)
            logger.info(f"Generated English response: {decoded}")

            if tgt_lang != "eng_Latn":
                translated_response = await perform_internal_translation(
                    sentences=[decoded],
                    src_lang="eng_Latn",
                    tgt_lang=tgt_lang
                )
                final_response = translated_response[0]
                logger.info(f"Translated response to {tgt_lang}: {final_response}")
            else:
                final_response = decoded
                logger.info("Response kept in English, no translation needed")
        else:
            if src_lang != "eng_Latn":
                translated_prompt = await perform_internal_translation(
                    sentences=[prompt],
                    src_lang=src_lang,
                    tgt_lang="eng_Latn"
                )
                prompt_to_process = translated_prompt[0]
                logger.info(f"Translated prompt to English: {prompt_to_process}")
            else:
                prompt_to_process = prompt
                logger.info("Prompt already in English, no translation needed")

            decoded = await llm_manager.generate(prompt_to_process, settings.max_tokens)
            logger.info(f"Generated English response: {decoded}")

            if tgt_lang != "eng_Latn":
                translated_response = await perform_internal_translation(
                    sentences=[decoded],
                    src_lang="eng_Latn",
                    tgt_lang=tgt_lang
                )
                final_response = translated_response[0]
                logger.info(f"Translated response to {tgt_lang}: {final_response}")
            else:
                final_response = decoded
                logger.info("Response kept in English, no translation needed")

        return ChatResponse(response=final_response)
    except Exception as e:
        logger.error(f"Error processing request: {str(e)}")
        raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")

class TranscriptionResponse(BaseModel):
    text: str

class ASRModelManager:
    def __init__(self, device_type="cuda"):
        self.device_type = device_type
        self.model_language = {
            "kannada": "kn", "hindi": "hi", "malayalam": "ml", "assamese": "as", "bengali": "bn",
            "bodo": "brx", "dogri": "doi", "gujarati": "gu", "kashmiri": "ks", "konkani": "kok",
            "maithili": "mai", "manipuri": "mni", "marathi": "mr", "nepali": "ne", "odia": "or",
            "punjabi": "pa", "sanskrit": "sa", "santali": "sat", "sindhi": "sd", "tamil": "ta",
            "telugu": "te", "urdu": "ur"
        }

from fastapi import FastAPI, UploadFile
import torch
import torchaudio
from transformers import AutoModel
import argparse
import uvicorn
from pydantic import BaseModel
from pydub import AudioSegment
from fastapi import FastAPI, File, UploadFile, HTTPException, Query
from fastapi.responses import RedirectResponse, JSONResponse
from typing import List

# Load the model
model = AutoModel.from_pretrained("ai4bharat/indic-conformer-600m-multilingual", trust_remote_code=True)

asr_manager = ASRModelManager()

# Language to script mapping
LANGUAGE_TO_SCRIPT = {
    "kannada": "kan_Knda", "hindi": "hin_Deva", "malayalam": "mal_Mlym", "tamil": "tam_Taml",
    "telugu": "tel_Telu", "assamese": "asm_Beng", "bengali": "ben_Beng", "gujarati": "guj_Gujr",
    "marathi": "mar_Deva", "odia": "ory_Orya", "punjabi": "pan_Guru", "urdu": "urd_Arab",
    # Add more as needed
}

@app.post("/transcribe/", response_model=TranscriptionResponse)
async def transcribe_audio(file: UploadFile = File(...), language: str = Query(..., enum=list(asr_manager.model_language.keys()))):
    try:
        wav, sr = torchaudio.load(file.file)
        wav = torch.mean(wav, dim=0, keepdim=True)
        target_sample_rate = 16000
        if sr != target_sample_rate:
            resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sample_rate)
            wav = resampler(wav)
        transcription_rnnt = model(wav, asr_manager.model_language[language], "rnnt")
        return TranscriptionResponse(text=transcription_rnnt)
    except Exception as e:
        logger.error(f"Error in transcription: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Transcription failed: {str(e)}")
@app.post("/v1/speech_to_speech")
async def speech_to_speech(
    request: Request,  # Inject Request object from FastAPI
    file: UploadFile = File(...),
    language: str = Query(..., enum=list(asr_manager.model_language.keys())),
    voice: str = Body(default=config.voice)
) -> StreamingResponse:
    # Step 1: Transcribe audio to text
    transcription = await transcribe_audio(file, language)
    logger.info(f"Transcribed text: {transcription.text}")

    # Step 2: Process text with chat endpoint
    chat_request = ChatRequest(
        prompt=transcription.text,
        src_lang=LANGUAGE_TO_SCRIPT.get(language, "kan_Knda"),  # Dynamic script mapping
        tgt_lang=LANGUAGE_TO_SCRIPT.get(language, "kan_Knda")
    )
    processed_text = await chat(request, chat_request)  # Pass the injected request
    logger.info(f"Processed text: {processed_text.response}")

    # Step 3: Convert processed text to speech
    audio_response = await generate_audio(
        input=processed_text.response,
        voice=voice,
        model=tts_config.model,
        response_format=config.response_format,
        speed=SPEED
    )
    return audio_response

class BatchTranscriptionResponse(BaseModel):
    transcriptions: List[str]

import json

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run the FastAPI server.")
    parser.add_argument("--port", type=int, default=settings.port, help="Port to run the server on.")
    parser.add_argument("--host", type=str, default=settings.host, help="Host to run the server on.")
    parser.add_argument("--config", type=str, default="config_one", help="Configuration to use (e.g., config_one, config_two, config_three, config_four)")
    args = parser.parse_args()

    # Load the JSON configuration file
    def load_config(config_path="dhwani_config.json"):
        with open(config_path, "r") as f:
            return json.load(f)

    config_data = load_config()
    if args.config not in config_data["configs"]:
        raise ValueError(f"Invalid config: {args.config}. Available: {list(config_data['configs'].keys())}")
    
    selected_config = config_data["configs"][args.config]
    global_settings = config_data["global_settings"]

    # Update settings based on selected config
    settings.llm_model_name = selected_config["components"]["LLM"]["model"]
    settings.max_tokens = selected_config["components"]["LLM"]["max_tokens"]
    settings.host = global_settings["host"]
    settings.port = global_settings["port"]
    settings.chat_rate_limit = global_settings["chat_rate_limit"]
    settings.speech_rate_limit = global_settings["speech_rate_limit"]

    # Initialize LLMManager with the selected LLM model
    llm_manager = LLMManager(settings.llm_model_name)

    # Initialize ASR model if present in config
    if selected_config["components"]["ASR"]:
        asr_model_name = selected_config["components"]["ASR"]["model"]
        model = AutoModel.from_pretrained(asr_model_name, trust_remote_code=True)
        asr_manager.model_language[selected_config["language"]] = selected_config["components"]["ASR"]["language_code"]

    # Initialize TTS model if present in config
    if selected_config["components"]["TTS"]:
        tts_model_name = selected_config["components"]["TTS"]["model"]
        tts_config.model = tts_model_name  # Update tts_config to use the selected model
        tts_model_manager.get_or_load_model(tts_model_name)

    # Initialize Translation models - load all specified models
    if selected_config["components"]["Translation"]:
        for translation_config in selected_config["components"]["Translation"]:
            src_lang = translation_config["src_lang"]
            tgt_lang = translation_config["tgt_lang"]
            model_manager.get_model(src_lang, tgt_lang)

    # Override host and port from command line arguments if provided
    host = args.host if args.host != settings.host else settings.host
    port = args.port if args.port != settings.port else settings.port

    # Run the server
    uvicorn.run(app, host=host, port=port)