File size: 21,997 Bytes
e9cc529
 
f7e3ec7
 
e9cc529
f7e3ec7
e9cc529
 
 
 
 
 
 
 
cb5e4aa
 
2064dfb
 
e9cc529
 
bfdf1ac
f7e3ec7
 
 
 
e9cc529
c66a631
998f798
e9cc529
 
 
 
 
 
 
 
0d35999
e9cc529
 
 
 
 
0d35999
e9cc529
0d35999
e9cc529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfdf1ac
0d35999
e9cc529
 
0d35999
e9cc529
 
 
0d35999
e9cc529
0d35999
 
e9cc529
0d35999
e9cc529
0d35999
e9cc529
0d35999
 
 
 
e9cc529
 
0d35999
 
e9cc529
 
0d35999
 
 
e9cc529
0d35999
 
f7e3ec7
 
 
 
 
 
 
 
 
 
e9cc529
 
f7e3ec7
 
 
 
 
 
 
 
 
bfdf1ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9cc529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7e3ec7
 
 
 
 
 
 
 
 
e9cc529
 
 
 
 
 
 
 
 
 
f7e3ec7
e546f76
 
 
 
e9cc529
e546f76
 
 
 
 
 
 
 
 
 
 
 
 
e9cc529
e546f76
e9cc529
 
e546f76
 
e9cc529
 
e546f76
 
 
 
 
 
 
 
 
 
 
e9cc529
 
998f798
e9cc529
998f798
bfdf1ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d35999
bfdf1ac
0d35999
 
 
 
e9cc529
 
0d35999
e9cc529
 
 
 
 
0d35999
 
 
 
 
bfdf1ac
0d35999
 
 
 
 
 
e9cc529
0d35999
 
 
 
 
 
 
 
 
bfdf1ac
 
 
 
 
0d35999
e9cc529
0d35999
bfdf1ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d35999
f7e3ec7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse, Response
import io
import math
from PIL import Image, ImageOps, ImageDraw, ImageFilter
import torch
import numpy as np
from diffusers import (
    StableDiffusionInstructPix2PixPipeline,
    StableDiffusionInpaintPipeline,
    StableDiffusionXLPipeline,
    UNet2DConditionModel,
    EulerDiscreteScheduler,
)
from huggingface_hub import hf_hub_download, login
from safetensors.torch import load_file
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
from sam2.sam2_image_predictor import SAM2ImagePredictor
import cv2
import os
from typing import List, Optional

# Initialize FastAPI app
app = FastAPI()

# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"

# Model variables (initially None, loaded lazily)
pipe_edit = None  # InstructPix2Pix
pipe_inpaint = None  # Stable Diffusion Inpainting
pipe_generate = None  # Stable Diffusion XL
pipe_runway = None  # Runway Inpainting
dino_processor = None  # Grounding DINO processor
dino_model = None  # Grounding DINO model
sam_predictor = None  # SAM 2 predictor

# Default configuration values
DEFAULT_STEPS = 50
DEFAULT_TEXT_CFG = 7.5
DEFAULT_IMAGE_CFG = 1.5
DEFAULT_SEED = 1371
DEFAULT_TEXT_QUERY = "a tank."
HF_TOKEN = os.getenv("HF_TOKEN")

# Helper functions for lazy loading
def load_instruct_pix2pix() -> StableDiffusionInstructPix2PixPipeline:
    global pipe_edit
    if pipe_edit is None:
        model_id = "timbrooks/instruct-pix2pix"
        pipe_edit = StableDiffusionInstructPix2PixPipeline.from_pretrained(
            model_id, torch_dtype=torch.float16, safety_checker=None
        ).to(device)
    return pipe_edit

def load_inpaint_pipeline() -> StableDiffusionInpaintPipeline:
    global pipe_inpaint
    if pipe_inpaint is None:
        inpaint_model_id = "stabilityai/stable-diffusion-2-inpainting"
        pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
            inpaint_model_id, torch_dtype=torch.float16, safety_checker=None
        ).to(device)
    return pipe_inpaint

def load_generate_pipeline() -> StableDiffusionXLPipeline:
    global pipe_generate
    if pipe_generate is None:
        try:
            if HF_TOKEN:
                login(token=HF_TOKEN)
            base = "stabilityai/stable-diffusion-xl-base-1.0"
            repo = "ByteDance/SDXL-Lightning"
            ckpt = "sdxl_lightning_4step_unet.safetensors"
            unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(device, torch.float16)
            unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))
            pipe_generate = StableDiffusionXLPipeline.from_pretrained(
                base, unet=unet, torch_dtype=torch.float16, variant="fp16"
            ).to(device)
            pipe_generate.scheduler = EulerDiscreteScheduler.from_config(
                pipe_generate.scheduler.config, timestep_spacing="trailing"
            )
        except Exception as e:
            raise RuntimeError(f"Failed to load generate pipeline: {str(e)}")
    return pipe_generate

def load_runway_inpaint() -> StableDiffusionInpaintPipeline:
    global pipe_runway
    if pipe_runway is None:
        model_id_runway = "runwayml/stable-diffusion-inpainting"
        pipe_runway = StableDiffusionInpaintPipeline.from_pretrained(model_id_runway).to(device)
    return pipe_runway

def load_dino() -> tuple[AutoProcessor, AutoModelForZeroShotObjectDetection]:
    global dino_processor, dino_model
    if dino_processor is None or dino_model is None:
        dino_model_id = "IDEA-Research/grounding-dino-base"
        dino_processor = AutoProcessor.from_pretrained(dino_model_id)
        dino_model = AutoModelForZeroShotObjectDetection.from_pretrained(dino_model_id).to(device)
    return dino_processor, dino_model

def load_sam() -> SAM2ImagePredictor:
    global sam_predictor
    if sam_predictor is None:
        sam_predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-tiny")
        sam_predictor.model.to(device)
    return sam_predictor

# Image processing helper functions
def process_image_with_dino(image: Image.Image, text_query: str = DEFAULT_TEXT_QUERY):
    processor, model = load_dino()
    inputs = processor(images=image, text=text_query, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model(**inputs)
    results = processor.post_process_grounded_object_detection(
        outputs, inputs.input_ids, threshold=0.4, text_threshold=0.3, target_sizes=[image.size[::-1]]
    )
    return results[0]

def segment_with_sam(image: Image.Image, boxes: list):
    predictor = load_sam()
    image_np = np.array(image)
    predictor.set_image(image_np)
    if not boxes:
        return np.zeros(image_np.shape[:2], dtype=bool)
    boxes_tensor = torch.tensor(
        [[box["x_min"], box["y_min"], box["x_max"], box["y_max"]] for box in boxes],
        dtype=torch.float32
    ).to(device)
    masks, _, _ = predictor.predict(point_coords=None, point_labels=None, box=boxes_tensor, multimask_output=False)
    return masks[0]

def create_background_mask(image_np: np.ndarray, mask: np.ndarray) -> np.ndarray:
    mask_inv = np.logical_not(mask).astype(np.uint8) * 255
    mask_rgb = cv2.cvtColor(mask_inv, cv2.COLOR_GRAY2RGB)
    return mask_rgb

def create_object_mask(image_np: np.ndarray, mask: np.ndarray) -> np.ndarray:
    mask_rgb = cv2.cvtColor(mask.astype(np.uint8) * 255, cv2.COLOR_GRAY2RGB)
    return mask_rgb

def process_image(input_image: Image.Image, instruction: str, steps: int, text_cfg_scale: float, image_cfg_scale: float, seed: int):
    width, height = input_image.size
    factor = 512 / max(width, height)
    factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
    width = int((width * factor) // 64) * 64
    height = int((height * factor) // 64) * 64
    input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
    if not instruction:
        return input_image
    generator = torch.manual_seed(seed)
    pipe = load_instruct_pix2pix()
    edited_image = pipe(
        instruction,
        image=input_image,
        guidance_scale=text_cfg_scale,
        image_guidance_scale=image_cfg_scale,
        num_inference_steps=steps,
        generator=generator,
    ).images[0]
    return edited_image

def prepare_guided_image(original_image: Image.Image, reference_image: Image.Image, mask_image: Image.Image) -> Image.Image:
    original_array = np.array(original_image)
    reference_array = np.array(reference_image)
    mask_array = np.array(mask_image) / 255.0
    mask_array = mask_array[:, :, np.newaxis]
    blended_array = original_array * (1 - mask_array) + reference_array * mask_array
    return Image.fromarray(blended_array.astype(np.uint8))

def soften_mask(mask_image: Image.Image, softness: int = 5) -> Image.Image:
    return mask_image.filter(ImageFilter.GaussianBlur(radius=softness))

def generate_rectangular_mask(image_size: tuple, x1: int = 100, y1: int = 100, x2: int = 200, y2: int = 200) -> Image.Image:
    mask = Image.new("L", image_size, 0)
    draw = ImageDraw.Draw(mask)
    draw.rectangle([x1, y1, x2, y2], fill=255)
    return mask

def segment_tank(tank_image: Image.Image) -> tuple[Image.Image, Image.Image]:
    tank_array = np.array(tank_image.convert("RGB"))
    tank_array = cv2.cvtColor(tank_array, cv2.COLOR_RGB2BGR)
    hsv = cv2.cvtColor(tank_array, cv2.COLOR_BGR2HSV)
    lower_snow = np.array([0, 0, 180])
    upper_snow = np.array([180, 50, 255])
    snow_mask = cv2.inRange(hsv, lower_snow, upper_snow)
    tank_mask = cv2.bitwise_not(snow_mask)
    kernel = np.ones((5, 5), np.uint8)
    tank_mask = cv2.erode(tank_mask, kernel, iterations=1)
    tank_mask = cv2.dilate(tank_mask, kernel, iterations=1)
    tank_mask_image = Image.fromarray(tank_mask, mode="L")
    tank_array_rgb = np.array(tank_image.convert("RGB"))
    mask_array = tank_mask / 255.0
    mask_array = mask_array[:, :, np.newaxis]
    segmented_tank = (tank_array_rgb * mask_array).astype(np.uint8)
    alpha = tank_mask
    segmented_tank_rgba = np.zeros((tank_image.height, tank_image.width, 4), dtype=np.uint8)
    segmented_tank_rgba[:, :, :3] = segmented_tank
    segmented_tank_rgba[:, :, 3] = alpha
    segmented_tank_image = Image.fromarray(segmented_tank_rgba, mode="RGBA")
    return segmented_tank_image, tank_mask_image

async def apply_camouflage_to_tank(tank_image: Image.Image) -> Image.Image:
    segmented_tank, tank_mask = segment_tank(tank_image)
    pipe = load_runway_inpaint()
    camouflaged_tank = pipe(
        prompt="Apply a grassy camouflage pattern with shades of green and brown to the tank, preserving its structure.",
        image=segmented_tank.convert("RGB"),
        mask_image=tank_mask,
        strength=0.5,
        guidance_scale=8.0,
        num_inference_steps=50,
        negative_prompt="snow, ice, rock, stone, boat, unrelated objects"
    ).images[0]
    camouflaged_tank_rgba = np.zeros((camouflaged_tank.height, camouflaged_tank.width, 4), dtype=np.uint8)
    camouflaged_tank_rgba[:, :, :3] = np.array(camouflaged_tank)
    camouflaged_tank_rgba[:, :, 3] = np.array(tank_mask)
    return Image.fromarray(camouflaged_tank_rgba, mode="RGBA")

def fit_image_to_mask(original_image: Image.Image, reference_image: Image.Image, mask_x1: int, mask_y1: int, mask_x2: int, mask_y2: int) -> tuple:
    mask_width = mask_x2 - mask_x1
    mask_height = mask_y2 - mask_y1
    if mask_width <= 0 or mask_height <= 0:
        raise ValueError("Mask dimensions must be positive")
    ref_width, ref_height = reference_image.size
    aspect_ratio = ref_width / ref_height
    if mask_width / mask_height > aspect_ratio:
        new_height = mask_height
        new_width = int(new_height * aspect_ratio)
    else:
        new_width = mask_width
        new_height = int(new_width / aspect_ratio)
    reference_image_resized = reference_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
    guided_image = original_image.copy().convert("RGB")
    paste_x = mask_x1 + (mask_width - new_width) // 2
    paste_y = mask_y1 + (mask_height - new_height) // 2
    guided_image.paste(reference_image_resized, (paste_x, paste_y), reference_image_resized)
    mask_image = generate_rectangular_mask(original_image.size, mask_x1, mask_y1, mask_x2, mask_y2)
    return guided_image, mask_image

# Endpoints
@app.get("/generate")
async def generate_image(prompt: str):
    try:
        pipe = load_generate_pipeline()
        image = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
        buffer = io.BytesIO()
        image.save(buffer, format="PNG")
        buffer.seek(0)
        return Response(content=buffer.getvalue(), media_type="image/png")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error generating image: {str(e)}")

@app.get("/health")
async def health_check():
    return {"status": "healthy"}

@app.post("/edit-image/")
async def edit_image(
    file: UploadFile = File(...),
    instruction: str = Form(...),
    steps: int = Form(default=DEFAULT_STEPS),
    text_cfg_scale: float = Form(default=DEFAULT_TEXT_CFG),
    image_cfg_scale: float = Form(default=DEFAULT_IMAGE_CFG),
    seed: int = Form(default=DEFAULT_SEED)
):
    try:
        image_data = await file.read()
        input_image = Image.open(io.BytesIO(image_data)).convert("RGB")
        edited_image = process_image(input_image, instruction, steps, text_cfg_scale, image_cfg_scale, seed)
        img_byte_arr = io.BytesIO()
        edited_image.save(img_byte_arr, format="PNG")
        img_byte_arr.seek(0)
        return StreamingResponse(img_byte_arr, media_type="image/png")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error editing image: {str(e)}")

@app.post("/inpaint/")
async def inpaint_image(
    file: UploadFile = File(...),
    prompt: str = Form(...),
    mask_coordinates: str = Form(...),
    steps: int = Form(default=DEFAULT_STEPS),
    guidance_scale: float = Form(default=7.5),
    seed: int = Form(default=DEFAULT_SEED)
):
    try:
        image_data = await file.read()
        input_image = Image.open(io.BytesIO(image_data)).convert("RGB")
        width, height = input_image.size
        factor = 512 / max(width, height)
        factor = math.ceil(min(width, height) * factor / 8) * 8 / min(width, height)
        width = int((width * factor) // 8) * 8
        height = int((height * factor) // 8) * 8
        input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
        mask = Image.new("L", (width, height), 0)
        draw = ImageDraw.Draw(mask)
        x1, y1, x2, y2 = map(int, mask_coordinates.split(","))
        x1, y1, x2, y2 = int(x1 * factor), int(y1 * factor), int(x2 * factor), int(y2 * factor)
        draw.rectangle([x1, y1, x2, y2], fill=255)
        generator = torch.manual_seed(seed)
        pipe = load_inpaint_pipeline()
        inpainted_image = pipe(
            prompt=prompt,
            image=input_image,
            mask_image=mask,
            num_inference_steps=steps,
            guidance_scale=guidance_scale,
            generator=generator,
        ).images[0]
        img_byte_arr = io.BytesIO()
        inpainted_image.save(img_byte_arr, format="PNG")
        img_byte_arr.seek(0)
        return StreamingResponse(img_byte_arr, media_type="image/png")
    except ValueError:
        raise HTTPException(status_code=400, detail="Invalid mask coordinates format. Use 'x1,y1,x2,y2'.")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error inpainting image: {str(e)}")

@app.post("/inpaint-with-mask/")
async def inpaint_with_mask(
    image: UploadFile = File(...),
    mask: UploadFile = File(...),
    prompt: str = Form(default="Fill the masked area with appropriate content.")
):
    try:
        image_bytes = await image.read()
        mask_bytes = await mask.read()
        original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
        mask_image = Image.open(io.BytesIO(mask_bytes)).convert("L")
        if original_image.size != mask_image.size:
            raise HTTPException(status_code=400, detail="Image and mask dimensions must match.")
        pipe = load_runway_inpaint()
        result = pipe(prompt=prompt, image=original_image, mask_image=mask_image).images[0]
        result_bytes = io.BytesIO()
        result.save(result_bytes, format="PNG")
        result_bytes.seek(0)
        return StreamingResponse(
            result_bytes,
            media_type="image/png",
            headers={"Content-Disposition": "attachment; filename=inpainted_image.png"}
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error during inpainting: {str(e)}")

@app.post("/inpaint-with-reference/")
async def inpaint_with_reference(
    image: UploadFile = File(...),
    reference_image: UploadFile = File(...),
    prompt: str = Form(default="Integrate the reference content naturally into the masked area, matching style and lighting."),
    mask_x1: int = Form(default=100),
    mask_y1: int = Form(default=100),
    mask_x2: int = Form(default=200),
    mask_y2: int = Form(default=200)
):
    try:
        image_bytes = await image.read()
        reference_bytes = await reference_image.read()
        original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
        reference_image = Image.open(io.BytesIO(reference_bytes)).convert("RGB")
        if original_image.size != reference_image.size:
            reference_image = reference_image.resize(original_image.size, Image.Resampling.LANCZOS)
        mask_image = generate_rectangular_mask(original_image.size, mask_x1, mask_y1, mask_x2, mask_y2)
        softened_mask = soften_mask(mask_image, softness=5)
        guided_image = prepare_guided_image(original_image, reference_image, softened_mask)
        pipe = load_runway_inpaint()
        result = pipe(
            prompt=prompt,
            image=guided_image,
            mask_image=softened_mask,
            strength=0.75,
            guidance_scale=7.5
        ).images[0]
        result_bytes = io.BytesIO()
        result.save(result_bytes, format="PNG")
        result_bytes.seek(0)
        return StreamingResponse(
            result_bytes,
            media_type="image/png",
            headers={"Content-Disposition": "attachment; filename=natural_inpaint_image.png"}
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error during natural inpainting: {str(e)}")

@app.post("/fit-image-to-mask/")
async def fit_image_to_mask_endpoint(
    image: UploadFile = File(...),
    reference_image: UploadFile = File(...),
    mask_x1: int = Form(default=200),
    mask_y1: int = Form(default=200),
    mask_x2: int = Form(default=500),
    mask_y2: int = Form(default=500)
):
    try:
        image_bytes = await image.read()
        reference_bytes = await reference_image.read()
        original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
        reference_image = Image.open(io.BytesIO(reference_bytes)).convert("RGB")
        camouflaged_tank = await apply_camouflage_to_tank(reference_image)
        guided_image, mask_image = fit_image_to_mask(original_image, camouflaged_tank, mask_x1, mask_y1, mask_x2, mask_y2)
        softened_mask = soften_mask(mask_image, softness=2)
        pipe = load_runway_inpaint()
        result = pipe(
            prompt="Blend the camouflaged tank into the grassy field with trees, ensuring a non-snowy environment, matching the style, lighting, and surroundings.",
            image=guided_image,
            mask_image=softened_mask,
            strength=0.2,
            guidance_scale=7.5,
            num_inference_steps=50,
            negative_prompt="snow, ice, rock, stone, boat, unrelated objects"
        ).images[0]
        result_bytes = io.BytesIO()
        result.save(result_bytes, format="PNG")
        result_bytes.seek(0)
        return StreamingResponse(
            result_bytes,
            media_type="image/png",
            headers={"Content-Disposition": "attachment; filename=fitted_image.png"}
        )
    except ValueError as ve:
        raise HTTPException(status_code=400, detail=f"ValueError in processing: {str(ve)}")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error during fitting and inpainting: {str(e)}")

@app.post("/detect-json/")
async def detect_json(file: UploadFile = File(...), text_query: str = Form(default=DEFAULT_TEXT_QUERY)):
    try:
        image_data = await file.read()
        image = Image.open(io.BytesIO(image_data)).convert("RGB")
        results = process_image_with_dino(image, text_query)
        detections = [
            {
                "label": label,
                "score": float(score),
                "box": {"x_min": box[0].item(), "y_min": box[1].item(), "x_max": box[2].item(), "y_max": box[3].item()}
            }
            for box, label, score in zip(results["boxes"].cpu(), results["labels"], results["scores"])
        ]
        return JSONResponse(content={"detections": detections})
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")

@app.post("/segment-image/")
async def segment_image(file: UploadFile = File(...), text_query: str = Form(default=DEFAULT_TEXT_QUERY)):
    try:
        image_data = await file.read()
        image = Image.open(io.BytesIO(image_data)).convert("RGB")
        results = process_image_with_dino(image, text_query)
        boxes = [
            {"x_min": box[0].item(), "y_min": box[1].item(), "x_max": box[2].item(), "y_max": box[3].item()}
            for box in results["boxes"].cpu()
        ]
        mask = segment_with_sam(image, boxes)
        image_np = np.array(image)
        background_mask = create_background_mask(image_np, mask)
        segmented_image = cv2.bitwise_and(image_np, background_mask)
        output_image = Image.fromarray(segmented_image)
        img_byte_arr = io.BytesIO()
        output_image.save(img_byte_arr, format="PNG")
        img_byte_arr.seek(0)
        return StreamingResponse(
            img_byte_arr,
            media_type="image/png",
            headers={"Content-Disposition": "attachment; filename=segmented_image.png"}
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error segmenting image: {str(e)}")

@app.post("/mask-object/")
async def mask_object(file: UploadFile = File(...), text_query: str = Form(default=DEFAULT_TEXT_QUERY)):
    try:
        image_data = await file.read()
        image = Image.open(io.BytesIO(image_data)).convert("RGB")
        results = process_image_with_dino(image, text_query)
        boxes = [
            {"x_min": box[0].item(), "y_min": box[1].item(), "x_max": box[2].item(), "y_max": box[3].item()}
            for box in results["boxes"].cpu()
        ]
        mask = segment_with_sam(image, boxes)
        image_np = np.array(image)
        object_mask = create_object_mask(image_np, mask)
        masked_image = cv2.bitwise_and(image_np, object_mask)
        output_image = Image.fromarray(masked_image)
        img_byte_arr = io.BytesIO()
        output_image.save(img_byte_arr, format="PNG")
        img_byte_arr.seek(0)
        return StreamingResponse(
            img_byte_arr,
            media_type="image/png",
            headers={"Content-Disposition": "attachment; filename=masked_object_image.png"}
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error masking object: {str(e)}")

@app.get("/")
async def root():
    return {"message": "InstructPix2Pix API is running. Use POST /edit-image/ or /inpaint/ to edit images."}

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)