Spaces:
Paused
Paused
File size: 21,997 Bytes
e9cc529 f7e3ec7 e9cc529 f7e3ec7 e9cc529 cb5e4aa 2064dfb e9cc529 bfdf1ac f7e3ec7 e9cc529 c66a631 998f798 e9cc529 0d35999 e9cc529 0d35999 e9cc529 0d35999 e9cc529 bfdf1ac 0d35999 e9cc529 0d35999 e9cc529 0d35999 e9cc529 0d35999 e9cc529 0d35999 e9cc529 0d35999 e9cc529 0d35999 e9cc529 0d35999 e9cc529 0d35999 e9cc529 0d35999 f7e3ec7 e9cc529 f7e3ec7 bfdf1ac e9cc529 f7e3ec7 e9cc529 f7e3ec7 e546f76 e9cc529 e546f76 e9cc529 e546f76 e9cc529 e546f76 e9cc529 e546f76 e9cc529 998f798 e9cc529 998f798 bfdf1ac 0d35999 bfdf1ac 0d35999 e9cc529 0d35999 e9cc529 0d35999 bfdf1ac 0d35999 e9cc529 0d35999 bfdf1ac 0d35999 e9cc529 0d35999 bfdf1ac 0d35999 f7e3ec7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse, Response
import io
import math
from PIL import Image, ImageOps, ImageDraw, ImageFilter
import torch
import numpy as np
from diffusers import (
StableDiffusionInstructPix2PixPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionXLPipeline,
UNet2DConditionModel,
EulerDiscreteScheduler,
)
from huggingface_hub import hf_hub_download, login
from safetensors.torch import load_file
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
from sam2.sam2_image_predictor import SAM2ImagePredictor
import cv2
import os
from typing import List, Optional
# Initialize FastAPI app
app = FastAPI()
# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"
# Model variables (initially None, loaded lazily)
pipe_edit = None # InstructPix2Pix
pipe_inpaint = None # Stable Diffusion Inpainting
pipe_generate = None # Stable Diffusion XL
pipe_runway = None # Runway Inpainting
dino_processor = None # Grounding DINO processor
dino_model = None # Grounding DINO model
sam_predictor = None # SAM 2 predictor
# Default configuration values
DEFAULT_STEPS = 50
DEFAULT_TEXT_CFG = 7.5
DEFAULT_IMAGE_CFG = 1.5
DEFAULT_SEED = 1371
DEFAULT_TEXT_QUERY = "a tank."
HF_TOKEN = os.getenv("HF_TOKEN")
# Helper functions for lazy loading
def load_instruct_pix2pix() -> StableDiffusionInstructPix2PixPipeline:
global pipe_edit
if pipe_edit is None:
model_id = "timbrooks/instruct-pix2pix"
pipe_edit = StableDiffusionInstructPix2PixPipeline.from_pretrained(
model_id, torch_dtype=torch.float16, safety_checker=None
).to(device)
return pipe_edit
def load_inpaint_pipeline() -> StableDiffusionInpaintPipeline:
global pipe_inpaint
if pipe_inpaint is None:
inpaint_model_id = "stabilityai/stable-diffusion-2-inpainting"
pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
inpaint_model_id, torch_dtype=torch.float16, safety_checker=None
).to(device)
return pipe_inpaint
def load_generate_pipeline() -> StableDiffusionXLPipeline:
global pipe_generate
if pipe_generate is None:
try:
if HF_TOKEN:
login(token=HF_TOKEN)
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors"
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(device, torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))
pipe_generate = StableDiffusionXLPipeline.from_pretrained(
base, unet=unet, torch_dtype=torch.float16, variant="fp16"
).to(device)
pipe_generate.scheduler = EulerDiscreteScheduler.from_config(
pipe_generate.scheduler.config, timestep_spacing="trailing"
)
except Exception as e:
raise RuntimeError(f"Failed to load generate pipeline: {str(e)}")
return pipe_generate
def load_runway_inpaint() -> StableDiffusionInpaintPipeline:
global pipe_runway
if pipe_runway is None:
model_id_runway = "runwayml/stable-diffusion-inpainting"
pipe_runway = StableDiffusionInpaintPipeline.from_pretrained(model_id_runway).to(device)
return pipe_runway
def load_dino() -> tuple[AutoProcessor, AutoModelForZeroShotObjectDetection]:
global dino_processor, dino_model
if dino_processor is None or dino_model is None:
dino_model_id = "IDEA-Research/grounding-dino-base"
dino_processor = AutoProcessor.from_pretrained(dino_model_id)
dino_model = AutoModelForZeroShotObjectDetection.from_pretrained(dino_model_id).to(device)
return dino_processor, dino_model
def load_sam() -> SAM2ImagePredictor:
global sam_predictor
if sam_predictor is None:
sam_predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-tiny")
sam_predictor.model.to(device)
return sam_predictor
# Image processing helper functions
def process_image_with_dino(image: Image.Image, text_query: str = DEFAULT_TEXT_QUERY):
processor, model = load_dino()
inputs = processor(images=image, text=text_query, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
results = processor.post_process_grounded_object_detection(
outputs, inputs.input_ids, threshold=0.4, text_threshold=0.3, target_sizes=[image.size[::-1]]
)
return results[0]
def segment_with_sam(image: Image.Image, boxes: list):
predictor = load_sam()
image_np = np.array(image)
predictor.set_image(image_np)
if not boxes:
return np.zeros(image_np.shape[:2], dtype=bool)
boxes_tensor = torch.tensor(
[[box["x_min"], box["y_min"], box["x_max"], box["y_max"]] for box in boxes],
dtype=torch.float32
).to(device)
masks, _, _ = predictor.predict(point_coords=None, point_labels=None, box=boxes_tensor, multimask_output=False)
return masks[0]
def create_background_mask(image_np: np.ndarray, mask: np.ndarray) -> np.ndarray:
mask_inv = np.logical_not(mask).astype(np.uint8) * 255
mask_rgb = cv2.cvtColor(mask_inv, cv2.COLOR_GRAY2RGB)
return mask_rgb
def create_object_mask(image_np: np.ndarray, mask: np.ndarray) -> np.ndarray:
mask_rgb = cv2.cvtColor(mask.astype(np.uint8) * 255, cv2.COLOR_GRAY2RGB)
return mask_rgb
def process_image(input_image: Image.Image, instruction: str, steps: int, text_cfg_scale: float, image_cfg_scale: float, seed: int):
width, height = input_image.size
factor = 512 / max(width, height)
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
if not instruction:
return input_image
generator = torch.manual_seed(seed)
pipe = load_instruct_pix2pix()
edited_image = pipe(
instruction,
image=input_image,
guidance_scale=text_cfg_scale,
image_guidance_scale=image_cfg_scale,
num_inference_steps=steps,
generator=generator,
).images[0]
return edited_image
def prepare_guided_image(original_image: Image.Image, reference_image: Image.Image, mask_image: Image.Image) -> Image.Image:
original_array = np.array(original_image)
reference_array = np.array(reference_image)
mask_array = np.array(mask_image) / 255.0
mask_array = mask_array[:, :, np.newaxis]
blended_array = original_array * (1 - mask_array) + reference_array * mask_array
return Image.fromarray(blended_array.astype(np.uint8))
def soften_mask(mask_image: Image.Image, softness: int = 5) -> Image.Image:
return mask_image.filter(ImageFilter.GaussianBlur(radius=softness))
def generate_rectangular_mask(image_size: tuple, x1: int = 100, y1: int = 100, x2: int = 200, y2: int = 200) -> Image.Image:
mask = Image.new("L", image_size, 0)
draw = ImageDraw.Draw(mask)
draw.rectangle([x1, y1, x2, y2], fill=255)
return mask
def segment_tank(tank_image: Image.Image) -> tuple[Image.Image, Image.Image]:
tank_array = np.array(tank_image.convert("RGB"))
tank_array = cv2.cvtColor(tank_array, cv2.COLOR_RGB2BGR)
hsv = cv2.cvtColor(tank_array, cv2.COLOR_BGR2HSV)
lower_snow = np.array([0, 0, 180])
upper_snow = np.array([180, 50, 255])
snow_mask = cv2.inRange(hsv, lower_snow, upper_snow)
tank_mask = cv2.bitwise_not(snow_mask)
kernel = np.ones((5, 5), np.uint8)
tank_mask = cv2.erode(tank_mask, kernel, iterations=1)
tank_mask = cv2.dilate(tank_mask, kernel, iterations=1)
tank_mask_image = Image.fromarray(tank_mask, mode="L")
tank_array_rgb = np.array(tank_image.convert("RGB"))
mask_array = tank_mask / 255.0
mask_array = mask_array[:, :, np.newaxis]
segmented_tank = (tank_array_rgb * mask_array).astype(np.uint8)
alpha = tank_mask
segmented_tank_rgba = np.zeros((tank_image.height, tank_image.width, 4), dtype=np.uint8)
segmented_tank_rgba[:, :, :3] = segmented_tank
segmented_tank_rgba[:, :, 3] = alpha
segmented_tank_image = Image.fromarray(segmented_tank_rgba, mode="RGBA")
return segmented_tank_image, tank_mask_image
async def apply_camouflage_to_tank(tank_image: Image.Image) -> Image.Image:
segmented_tank, tank_mask = segment_tank(tank_image)
pipe = load_runway_inpaint()
camouflaged_tank = pipe(
prompt="Apply a grassy camouflage pattern with shades of green and brown to the tank, preserving its structure.",
image=segmented_tank.convert("RGB"),
mask_image=tank_mask,
strength=0.5,
guidance_scale=8.0,
num_inference_steps=50,
negative_prompt="snow, ice, rock, stone, boat, unrelated objects"
).images[0]
camouflaged_tank_rgba = np.zeros((camouflaged_tank.height, camouflaged_tank.width, 4), dtype=np.uint8)
camouflaged_tank_rgba[:, :, :3] = np.array(camouflaged_tank)
camouflaged_tank_rgba[:, :, 3] = np.array(tank_mask)
return Image.fromarray(camouflaged_tank_rgba, mode="RGBA")
def fit_image_to_mask(original_image: Image.Image, reference_image: Image.Image, mask_x1: int, mask_y1: int, mask_x2: int, mask_y2: int) -> tuple:
mask_width = mask_x2 - mask_x1
mask_height = mask_y2 - mask_y1
if mask_width <= 0 or mask_height <= 0:
raise ValueError("Mask dimensions must be positive")
ref_width, ref_height = reference_image.size
aspect_ratio = ref_width / ref_height
if mask_width / mask_height > aspect_ratio:
new_height = mask_height
new_width = int(new_height * aspect_ratio)
else:
new_width = mask_width
new_height = int(new_width / aspect_ratio)
reference_image_resized = reference_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
guided_image = original_image.copy().convert("RGB")
paste_x = mask_x1 + (mask_width - new_width) // 2
paste_y = mask_y1 + (mask_height - new_height) // 2
guided_image.paste(reference_image_resized, (paste_x, paste_y), reference_image_resized)
mask_image = generate_rectangular_mask(original_image.size, mask_x1, mask_y1, mask_x2, mask_y2)
return guided_image, mask_image
# Endpoints
@app.get("/generate")
async def generate_image(prompt: str):
try:
pipe = load_generate_pipeline()
image = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
buffer = io.BytesIO()
image.save(buffer, format="PNG")
buffer.seek(0)
return Response(content=buffer.getvalue(), media_type="image/png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating image: {str(e)}")
@app.get("/health")
async def health_check():
return {"status": "healthy"}
@app.post("/edit-image/")
async def edit_image(
file: UploadFile = File(...),
instruction: str = Form(...),
steps: int = Form(default=DEFAULT_STEPS),
text_cfg_scale: float = Form(default=DEFAULT_TEXT_CFG),
image_cfg_scale: float = Form(default=DEFAULT_IMAGE_CFG),
seed: int = Form(default=DEFAULT_SEED)
):
try:
image_data = await file.read()
input_image = Image.open(io.BytesIO(image_data)).convert("RGB")
edited_image = process_image(input_image, instruction, steps, text_cfg_scale, image_cfg_scale, seed)
img_byte_arr = io.BytesIO()
edited_image.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
return StreamingResponse(img_byte_arr, media_type="image/png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error editing image: {str(e)}")
@app.post("/inpaint/")
async def inpaint_image(
file: UploadFile = File(...),
prompt: str = Form(...),
mask_coordinates: str = Form(...),
steps: int = Form(default=DEFAULT_STEPS),
guidance_scale: float = Form(default=7.5),
seed: int = Form(default=DEFAULT_SEED)
):
try:
image_data = await file.read()
input_image = Image.open(io.BytesIO(image_data)).convert("RGB")
width, height = input_image.size
factor = 512 / max(width, height)
factor = math.ceil(min(width, height) * factor / 8) * 8 / min(width, height)
width = int((width * factor) // 8) * 8
height = int((height * factor) // 8) * 8
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
mask = Image.new("L", (width, height), 0)
draw = ImageDraw.Draw(mask)
x1, y1, x2, y2 = map(int, mask_coordinates.split(","))
x1, y1, x2, y2 = int(x1 * factor), int(y1 * factor), int(x2 * factor), int(y2 * factor)
draw.rectangle([x1, y1, x2, y2], fill=255)
generator = torch.manual_seed(seed)
pipe = load_inpaint_pipeline()
inpainted_image = pipe(
prompt=prompt,
image=input_image,
mask_image=mask,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
).images[0]
img_byte_arr = io.BytesIO()
inpainted_image.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
return StreamingResponse(img_byte_arr, media_type="image/png")
except ValueError:
raise HTTPException(status_code=400, detail="Invalid mask coordinates format. Use 'x1,y1,x2,y2'.")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error inpainting image: {str(e)}")
@app.post("/inpaint-with-mask/")
async def inpaint_with_mask(
image: UploadFile = File(...),
mask: UploadFile = File(...),
prompt: str = Form(default="Fill the masked area with appropriate content.")
):
try:
image_bytes = await image.read()
mask_bytes = await mask.read()
original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
mask_image = Image.open(io.BytesIO(mask_bytes)).convert("L")
if original_image.size != mask_image.size:
raise HTTPException(status_code=400, detail="Image and mask dimensions must match.")
pipe = load_runway_inpaint()
result = pipe(prompt=prompt, image=original_image, mask_image=mask_image).images[0]
result_bytes = io.BytesIO()
result.save(result_bytes, format="PNG")
result_bytes.seek(0)
return StreamingResponse(
result_bytes,
media_type="image/png",
headers={"Content-Disposition": "attachment; filename=inpainted_image.png"}
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during inpainting: {str(e)}")
@app.post("/inpaint-with-reference/")
async def inpaint_with_reference(
image: UploadFile = File(...),
reference_image: UploadFile = File(...),
prompt: str = Form(default="Integrate the reference content naturally into the masked area, matching style and lighting."),
mask_x1: int = Form(default=100),
mask_y1: int = Form(default=100),
mask_x2: int = Form(default=200),
mask_y2: int = Form(default=200)
):
try:
image_bytes = await image.read()
reference_bytes = await reference_image.read()
original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
reference_image = Image.open(io.BytesIO(reference_bytes)).convert("RGB")
if original_image.size != reference_image.size:
reference_image = reference_image.resize(original_image.size, Image.Resampling.LANCZOS)
mask_image = generate_rectangular_mask(original_image.size, mask_x1, mask_y1, mask_x2, mask_y2)
softened_mask = soften_mask(mask_image, softness=5)
guided_image = prepare_guided_image(original_image, reference_image, softened_mask)
pipe = load_runway_inpaint()
result = pipe(
prompt=prompt,
image=guided_image,
mask_image=softened_mask,
strength=0.75,
guidance_scale=7.5
).images[0]
result_bytes = io.BytesIO()
result.save(result_bytes, format="PNG")
result_bytes.seek(0)
return StreamingResponse(
result_bytes,
media_type="image/png",
headers={"Content-Disposition": "attachment; filename=natural_inpaint_image.png"}
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during natural inpainting: {str(e)}")
@app.post("/fit-image-to-mask/")
async def fit_image_to_mask_endpoint(
image: UploadFile = File(...),
reference_image: UploadFile = File(...),
mask_x1: int = Form(default=200),
mask_y1: int = Form(default=200),
mask_x2: int = Form(default=500),
mask_y2: int = Form(default=500)
):
try:
image_bytes = await image.read()
reference_bytes = await reference_image.read()
original_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
reference_image = Image.open(io.BytesIO(reference_bytes)).convert("RGB")
camouflaged_tank = await apply_camouflage_to_tank(reference_image)
guided_image, mask_image = fit_image_to_mask(original_image, camouflaged_tank, mask_x1, mask_y1, mask_x2, mask_y2)
softened_mask = soften_mask(mask_image, softness=2)
pipe = load_runway_inpaint()
result = pipe(
prompt="Blend the camouflaged tank into the grassy field with trees, ensuring a non-snowy environment, matching the style, lighting, and surroundings.",
image=guided_image,
mask_image=softened_mask,
strength=0.2,
guidance_scale=7.5,
num_inference_steps=50,
negative_prompt="snow, ice, rock, stone, boat, unrelated objects"
).images[0]
result_bytes = io.BytesIO()
result.save(result_bytes, format="PNG")
result_bytes.seek(0)
return StreamingResponse(
result_bytes,
media_type="image/png",
headers={"Content-Disposition": "attachment; filename=fitted_image.png"}
)
except ValueError as ve:
raise HTTPException(status_code=400, detail=f"ValueError in processing: {str(ve)}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error during fitting and inpainting: {str(e)}")
@app.post("/detect-json/")
async def detect_json(file: UploadFile = File(...), text_query: str = Form(default=DEFAULT_TEXT_QUERY)):
try:
image_data = await file.read()
image = Image.open(io.BytesIO(image_data)).convert("RGB")
results = process_image_with_dino(image, text_query)
detections = [
{
"label": label,
"score": float(score),
"box": {"x_min": box[0].item(), "y_min": box[1].item(), "x_max": box[2].item(), "y_max": box[3].item()}
}
for box, label, score in zip(results["boxes"].cpu(), results["labels"], results["scores"])
]
return JSONResponse(content={"detections": detections})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
@app.post("/segment-image/")
async def segment_image(file: UploadFile = File(...), text_query: str = Form(default=DEFAULT_TEXT_QUERY)):
try:
image_data = await file.read()
image = Image.open(io.BytesIO(image_data)).convert("RGB")
results = process_image_with_dino(image, text_query)
boxes = [
{"x_min": box[0].item(), "y_min": box[1].item(), "x_max": box[2].item(), "y_max": box[3].item()}
for box in results["boxes"].cpu()
]
mask = segment_with_sam(image, boxes)
image_np = np.array(image)
background_mask = create_background_mask(image_np, mask)
segmented_image = cv2.bitwise_and(image_np, background_mask)
output_image = Image.fromarray(segmented_image)
img_byte_arr = io.BytesIO()
output_image.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
return StreamingResponse(
img_byte_arr,
media_type="image/png",
headers={"Content-Disposition": "attachment; filename=segmented_image.png"}
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error segmenting image: {str(e)}")
@app.post("/mask-object/")
async def mask_object(file: UploadFile = File(...), text_query: str = Form(default=DEFAULT_TEXT_QUERY)):
try:
image_data = await file.read()
image = Image.open(io.BytesIO(image_data)).convert("RGB")
results = process_image_with_dino(image, text_query)
boxes = [
{"x_min": box[0].item(), "y_min": box[1].item(), "x_max": box[2].item(), "y_max": box[3].item()}
for box in results["boxes"].cpu()
]
mask = segment_with_sam(image, boxes)
image_np = np.array(image)
object_mask = create_object_mask(image_np, mask)
masked_image = cv2.bitwise_and(image_np, object_mask)
output_image = Image.fromarray(masked_image)
img_byte_arr = io.BytesIO()
output_image.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
return StreamingResponse(
img_byte_arr,
media_type="image/png",
headers={"Content-Disposition": "attachment; filename=masked_object_image.png"}
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error masking object: {str(e)}")
@app.get("/")
async def root():
return {"message": "InstructPix2Pix API is running. Use POST /edit-image/ or /inpaint/ to edit images."}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |