Spaces:
Sleeping
Sleeping
import numpy as np | |
from PIL import Image | |
import torch | |
import torch.nn.functional as F | |
def make_colorwheel(): | |
""" | |
Generates a color wheel for optical flow visualization as presented in: | |
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) | |
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf | |
Code follows the original C++ source code of Daniel Scharstein. | |
Code follows the the Matlab source code of Deqing Sun. | |
Returns: | |
np.ndarray: Color wheel | |
""" | |
RY = 15 | |
YG = 6 | |
GC = 4 | |
CB = 11 | |
BM = 13 | |
MR = 6 | |
ncols = RY + YG + GC + CB + BM + MR | |
colorwheel = np.zeros((ncols, 3)) | |
col = 0 | |
# RY | |
colorwheel[0:RY, 0] = 255 | |
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY) | |
col = col+RY | |
# YG | |
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG) | |
colorwheel[col:col+YG, 1] = 255 | |
col = col+YG | |
# GC | |
colorwheel[col:col+GC, 1] = 255 | |
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC) | |
col = col+GC | |
# CB | |
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB) | |
colorwheel[col:col+CB, 2] = 255 | |
col = col+CB | |
# BM | |
colorwheel[col:col+BM, 2] = 255 | |
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM) | |
col = col+BM | |
# MR | |
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR) | |
colorwheel[col:col+MR, 0] = 255 | |
return colorwheel | |
def flow_uv_to_colors(u, v, convert_to_bgr=False): | |
""" | |
Applies the flow color wheel to (possibly clipped) flow components u and v. | |
According to the C++ source code of Daniel Scharstein | |
According to the Matlab source code of Deqing Sun | |
Args: | |
u (np.ndarray): Input horizontal flow of shape [H,W] | |
v (np.ndarray): Input vertical flow of shape [H,W] | |
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. | |
Returns: | |
np.ndarray: Flow visualization image of shape [H,W,3] | |
""" | |
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) | |
colorwheel = make_colorwheel() # shape [55x3] | |
ncols = colorwheel.shape[0] | |
rad = np.sqrt(np.square(u) + np.square(v)) | |
a = np.arctan2(-v, -u)/np.pi | |
fk = (a+1) / 2*(ncols-1) | |
k0 = np.floor(fk).astype(np.int32) | |
k1 = k0 + 1 | |
k1[k1 == ncols] = 0 | |
f = fk - k0 | |
for i in range(colorwheel.shape[1]): | |
tmp = colorwheel[:,i] | |
col0 = tmp[k0] / 255.0 | |
col1 = tmp[k1] / 255.0 | |
col = (1-f)*col0 + f*col1 | |
idx = (rad <= 1) | |
col[idx] = 1 - rad[idx] * (1-col[idx]) | |
col[~idx] = col[~idx] * 0.75 # out of range | |
# Note the 2-i => BGR instead of RGB | |
ch_idx = 2-i if convert_to_bgr else i | |
flow_image[:,:,ch_idx] = np.floor(255 * col) | |
return flow_image | |
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False, max_flow=None): | |
""" | |
Expects a two dimensional flow image of shape. | |
Args: | |
flow_uv (torch.Tensor): Flow UV image of shape [2,H,W] | |
clip_flow (float, optional): Clip maximum of flow values. Defaults to None. | |
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False. | |
Returns: | |
PIL Image: Flow visualization image | |
""" | |
flow_uv = flow_uv.permute(1, 2, 0).cpu().numpy() # change to [H,W,2] and convert to numpy | |
if clip_flow is not None: | |
flow_uv = np.clip(flow_uv, 0, clip_flow) | |
u = flow_uv[:,:,0] | |
v = flow_uv[:,:,1] | |
if max_flow is None: | |
rad = np.sqrt(np.square(u) + np.square(v)) | |
rad_max = np.max(rad) | |
else: | |
rad_max = max_flow | |
epsilon = 1e-5 | |
u = u / (rad_max + epsilon) | |
v = v / (rad_max + epsilon) | |
flow_image = flow_uv_to_colors(u, v, convert_to_bgr) | |
return Image.fromarray(flow_image) | |
def resize_flow(flow, size, scale_type="none", mode="bicubic"): | |
""" | |
Resize the flow tensor (Bx2xHxW) to the given size (HxW). | |
flow tensor is in range of [-ori_w, ori_w] and [-ori_h, ori_h] | |
Size should be a tuple (H, W). | |
""" | |
ori_h, ori_w = flow.shape[2:] | |
flow = F.interpolate(flow, size=size, mode=mode, align_corners=False) | |
if scale_type == "scale" and (ori_h != size[0] or ori_w != size[1]): | |
flow[:,0,:,:] *= size[1] / ori_w | |
flow[:,1,:,:] *= size[0] / ori_h | |
elif scale_type == "normalize_fixed": # normalize to -1 ~ 1 | |
flow[:,0,:,:] /= ori_w | |
flow[:,1,:,:] /= ori_h | |
elif scale_type == "normalize_max": | |
max_flow_x = torch.amax(torch.abs(flow[:, 0, :, :]), dim=(1, 2)) | |
max_flow_y = torch.amax(torch.abs(flow[:, 1, :, :]), dim=(1, 2)) | |
flow[:, 0, :, :] /= max_flow_x.view(-1, 1, 1) | |
flow[:, 1, :, :] /= max_flow_y.view(-1, 1, 1) | |
return flow |