InstantDrag / InstDrag /utils /flow_utils.py
smarques's picture
checkout INstantDrag
fd0db3a
raw
history blame
4.78 kB
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
def make_colorwheel():
"""
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
Code follows the original C++ source code of Daniel Scharstein.
Code follows the the Matlab source code of Deqing Sun.
Returns:
np.ndarray: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
col = col+RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
colorwheel[col:col+YG, 1] = 255
col = col+YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
col = col+GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
colorwheel[col:col+CB, 2] = 255
col = col+CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
col = col+BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
colorwheel[col:col+MR, 0] = 255
return colorwheel
def flow_uv_to_colors(u, v, convert_to_bgr=False):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (np.ndarray): Input horizontal flow of shape [H,W]
v (np.ndarray): Input vertical flow of shape [H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
colorwheel = make_colorwheel() # shape [55x3]
ncols = colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, -u)/np.pi
fk = (a+1) / 2*(ncols-1)
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:,i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1-f)*col0 + f*col1
idx = (rad <= 1)
col[idx] = 1 - rad[idx] * (1-col[idx])
col[~idx] = col[~idx] * 0.75 # out of range
# Note the 2-i => BGR instead of RGB
ch_idx = 2-i if convert_to_bgr else i
flow_image[:,:,ch_idx] = np.floor(255 * col)
return flow_image
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False, max_flow=None):
"""
Expects a two dimensional flow image of shape.
Args:
flow_uv (torch.Tensor): Flow UV image of shape [2,H,W]
clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
PIL Image: Flow visualization image
"""
flow_uv = flow_uv.permute(1, 2, 0).cpu().numpy() # change to [H,W,2] and convert to numpy
if clip_flow is not None:
flow_uv = np.clip(flow_uv, 0, clip_flow)
u = flow_uv[:,:,0]
v = flow_uv[:,:,1]
if max_flow is None:
rad = np.sqrt(np.square(u) + np.square(v))
rad_max = np.max(rad)
else:
rad_max = max_flow
epsilon = 1e-5
u = u / (rad_max + epsilon)
v = v / (rad_max + epsilon)
flow_image = flow_uv_to_colors(u, v, convert_to_bgr)
return Image.fromarray(flow_image)
def resize_flow(flow, size, scale_type="none", mode="bicubic"):
"""
Resize the flow tensor (Bx2xHxW) to the given size (HxW).
flow tensor is in range of [-ori_w, ori_w] and [-ori_h, ori_h]
Size should be a tuple (H, W).
"""
ori_h, ori_w = flow.shape[2:]
flow = F.interpolate(flow, size=size, mode=mode, align_corners=False)
if scale_type == "scale" and (ori_h != size[0] or ori_w != size[1]):
flow[:,0,:,:] *= size[1] / ori_w
flow[:,1,:,:] *= size[0] / ori_h
elif scale_type == "normalize_fixed": # normalize to -1 ~ 1
flow[:,0,:,:] /= ori_w
flow[:,1,:,:] /= ori_h
elif scale_type == "normalize_max":
max_flow_x = torch.amax(torch.abs(flow[:, 0, :, :]), dim=(1, 2))
max_flow_y = torch.amax(torch.abs(flow[:, 1, :, :]), dim=(1, 2))
flow[:, 0, :, :] /= max_flow_x.view(-1, 1, 1)
flow[:, 1, :, :] /= max_flow_y.view(-1, 1, 1)
return flow