File size: 4,523 Bytes
c8f1f54
4fe456a
61b9893
df1e443
 
c8f1f54
61b9893
df1e443
882e052
df1e443
 
 
b032243
 
df1e443
b032243
 
 
 
 
 
 
 
 
 
 
 
df1e443
 
 
61b9893
df1e443
61b9893
882e052
5d4b17c
61b9893
b032243
61b9893
 
 
 
 
9aeab3c
b032243
 
 
61b9893
b032243
 
 
 
61b9893
b032243
61b9893
b032243
61b9893
 
 
df1e443
c8f1f54
61b9893
882e052
 
b032243
087c578
df1e443
a346948
b032243
df1e443
 
b032243
 
 
 
 
61b9893
df1e443
b032243
df1e443
b032243
61b9893
b032243
 
d40fdb6
b032243
d40fdb6
b032243
82c86ca
b032243
 
 
82c86ca
 
 
 
 
b032243
 
82c86ca
b032243
82c86ca
 
 
 
 
 
 
b032243
 
82c86ca
b032243
82c86ca
 
 
 
b032243
 
82c86ca
b032243
82c86ca
b032243
 
82c86ca
 
b032243
82c86ca
 
 
b032243
 
82c86ca
 
b032243
 
 
 
 
82c86ca
 
 
b032243
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import io
import torch
from diffusers import DiffusionPipeline

# ===== CONFIGURATION =====
MODEL_NAME = "HiDream-ai/HiDream-I1-Full"
WATERMARK_TEXT = "SelamGPT"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
TORCH_DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32

# ===== MODEL LOADING WITH GRADIO CACHE =====
@gr.Cache()  # Now works in Gradio 5.x
def load_model():
    pipe = DiffusionPipeline.from_pretrained(
        MODEL_NAME,
        torch_dtype=TORCH_DTYPE
    ).to(DEVICE)
    
    # Optimizations
    if DEVICE == "cuda":
        try:
            pipe.enable_xformers_memory_efficient_attention()
        except:
            print("Xformers not available, using default attention")
        pipe.enable_attention_slicing()
    
    return pipe

# ===== WATERMARK FUNCTION =====
def add_watermark(image):
    """Add watermark with optimized PNG output"""
    try:
        draw = ImageDraw.Draw(image)
        
        font_size = max(24, int(image.width * 0.03))  # Dynamic font sizing
        try:
            font = ImageFont.truetype("Roboto-Bold.ttf", font_size)
        except:
            font = ImageFont.load_default(font_size)
        
        text_width = draw.textlength(WATERMARK_TEXT, font=font)
        margin = image.width * 0.02  # Dynamic margin
        x = image.width - text_width - margin
        y = image.height - (font_size * 1.5)
        
        # Shadow effect
        draw.text((x+2, y+2), WATERMARK_TEXT, font=font, fill=(0, 0, 0, 150))
        # Main text
        draw.text((x, y), WATERMARK_TEXT, font=font, fill=(255, 215, 0))  # Gold color
        
        # Optimized PNG output
        img_byte_arr = io.BytesIO()
        image.save(img_byte_arr, format='PNG', optimize=True)
        return Image.open(img_byte_arr)
    except Exception as e:
        print(f"Watermark error: {str(e)}")
        return image

# ===== IMAGE GENERATION =====
def generate_image(prompt):
    if not prompt.strip():
        raise gr.Error("Please enter a prompt")
    
    try:
        model = load_model()
        result = model(
            prompt,
            num_inference_steps=30,
            guidance_scale=7.5,
            width=1024,
            height=1024
        )
        return add_watermark(result.images[0]), "🎨 Generation complete!"
    
    except torch.cuda.OutOfMemoryError:
        raise gr.Error("Out of memory! Try a simpler prompt or smaller image size")
    except Exception as e:
        raise gr.Error(f"Generation failed: {str(e)[:200]}")

# ===== GRADIO 5.x INTERFACE =====
with gr.Blocks(theme=gr.themes.Default(
    primary_hue="emerald",
    secondary_hue="gold",
    font=[gr.themes.GoogleFont("Poppins"), "Arial", "sans-serif"]
)) as demo:
    
    gr.Markdown("""<h1 align="center">🎨 SelamGPT HiDream Generator</h1>""")
    
    with gr.Row(variant="panel"):
        with gr.Column(scale=3):
            prompt_input = gr.Textbox(
                label="Describe your image",
                placeholder="A futuristic Ethiopian city with flying cars...",
                lines=3,
                max_lines=5,
                autofocus=True
            )
            generate_btn = gr.Button("Generate Image", variant="primary")
            
            gr.Examples(
                examples=[
                    ["An ancient Aksumite warrior in cyberpunk armor, 4k detailed"],
                    ["Traditional Ethiopian coffee ceremony in zero gravity"],
                    ["Portrait of a Habesha queen with golden jewelry"]
                ],
                inputs=prompt_input,
                label="Try these prompts:"
            )
        
        with gr.Column(scale=2):
            output_image = gr.Image(
                label="Generated Image",
                type="pil",
                height=512,
                interactive=False
            )
            status = gr.Textbox(
                label="Status",
                interactive=False,
                show_label=False
            )
    
    # Event handlers
    generate_btn.click(
        fn=generate_image,
        inputs=prompt_input,
        outputs=[output_image, status],
        api_name="generate"
    )
    
    # Keyboard shortcut
    prompt_input.submit(
        fn=generate_image,
        inputs=prompt_input,
        outputs=[output_image, status]
    )

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False
    )