File size: 5,566 Bytes
c8f1f54
75726c1
 
4fe456a
75726c1
218c1e6
4103aa4
5ddcd4f
75726c1
 
 
 
5ddcd4f
 
75726c1
4103aa4
 
 
 
 
75726c1
 
5ddcd4f
 
 
 
75726c1
5ddcd4f
882e052
df1e443
5ddcd4f
75726c1
5ddcd4f
882e052
5ddcd4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75726c1
 
5ddcd4f
 
 
 
 
75726c1
 
882e052
bc1c1c7
75726c1
5ddcd4f
 
 
 
75726c1
5ddcd4f
75726c1
5ddcd4f
 
75726c1
 
 
5ddcd4f
 
75726c1
5ddcd4f
75726c1
 
5ddcd4f
 
4103aa4
 
5ddcd4f
4103aa4
5ddcd4f
 
 
 
 
75726c1
 
 
5ddcd4f
 
 
75726c1
 
5ddcd4f
 
 
 
 
 
75726c1
5ddcd4f
 
 
 
 
 
 
 
75726c1
5ddcd4f
 
 
 
82c86ca
5ddcd4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75726c1
5ddcd4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82c86ca
 
5ddcd4f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import gradio as gr
import numpy as np
import random
from PIL import Image, ImageDraw, ImageFont
import torch
from diffusers import DiffusionPipeline
import io
import time

# ===== CONFIG =====
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if device == "cuda" else torch.float32

# Using SDXL Turbo for fastest generation
model_repo_id = "stabilityai/sdxl-turbo"
pipe = DiffusionPipeline.from_pretrained(
    model_repo_id,
    torch_dtype=torch_dtype,
    variant="fp16" if device == "cuda" else None
)
pipe.to(device)

# Enable memory efficient attention and channels last for better performance
pipe.enable_xformers_memory_efficient_attention()
pipe.unet.to(memory_format=torch.channels_last)

MAX_SEED = np.iinfo(np.int32).max
IMAGE_SIZE = 1024  # Same as original code
WATERMARK_TEXT = "SelamGPT"

# ===== OPTIMIZED WATERMARK FUNCTION =====
def add_watermark(image):
    """Optimized watermark function matching original style"""
    try:
        draw = ImageDraw.Draw(image)
        font_size = 24  # Fixed size as in original
        
        try:
            font = ImageFont.truetype("Roboto-Bold.ttf", font_size)
        except:
            font = ImageFont.load_default(font_size)
        
        text_width = draw.textlength(WATERMARK_TEXT, font=font)
        x = image.width - text_width - 10
        y = image.height - 34
        
        # Shadow effect
        draw.text((x+1, y+1), WATERMARK_TEXT, font=font, fill=(0, 0, 0, 128))
        draw.text((x, y), WATERMARK_TEXT, font=font, fill=(255, 255, 255))
        
        return image
    except Exception as e:
        print(f"Watermark error: {str(e)}")
        return image

# ===== ULTRA-FAST INFERENCE FUNCTION =====
def generate(
    prompt,
    negative_prompt="",
    seed=None,
    randomize_seed=True,
    guidance_scale=0.0,  # 0.0 for turbo models
    num_inference_steps=1,  # Can be as low as 1-2 for turbo
    progress=gr.Progress(track_tqdm=True),
):
    if not prompt.strip():
        return None, "⚠️ Please enter a prompt"

    start_time = time.time()
    
    # Seed handling
    if randomize_seed or seed is None:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.manual_seed(seed)
    
    # Ultra-fast generation with minimal steps
    result = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=IMAGE_SIZE,
        height=IMAGE_SIZE,
        guidance_scale=guidance_scale,
        num_inference_steps=max(1, num_inference_steps),  # Minimum 1 step
        generator=generator,
    ).images[0]
    
    # Optimized watermark and JPG conversion
    watermarked = add_watermark(result)
    buffer = io.BytesIO()
    watermarked.save(buffer, format="JPEG", quality=85, optimize=True)
    buffer.seek(0)
    
    gen_time = time.time() - start_time
    status = f"✔️ Generated in {gen_time:.2f}s | Seed: {seed}"
    
    return Image.open(buffer), status

# ===== EXAMPLES =====
examples = [
    ["An ancient Aksumite warrior in cyberpunk armor, 4k detailed"],
    ["Traditional Ethiopian coffee ceremony in zero gravity"],
    ["Portrait of a Habesha queen with golden jewelry"]
]

# ===== OPTIMIZED INTERFACE =====
theme = gr.themes.Default(
    primary_hue="emerald",
    secondary_hue="amber",
    font=[gr.themes.GoogleFont("Poppins"), "Arial", "sans-serif"]
)

with gr.Blocks(theme=theme, title="SelamGPT Turbo Generator") as demo:
    gr.Markdown("""
    # 🎨 SelamGPT Turbo Image Generator
    *Ultra-fast 1024x1024 image generation with SDXL-Turbo*
    """)
    
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(
                label="Describe your image",
                placeholder="A futuristic Ethiopian city with flying cars...",
                lines=3,
                max_lines=5
            )
            with gr.Row():
                generate_btn = gr.Button("Generate Image", variant="primary")
                clear_btn = gr.Button("Clear")
            
            gr.Examples(
                examples=examples,
                inputs=[prompt]
            )
            
        with gr.Column(scale=2):
            output_image = gr.Image(
                label="Generated Image",
                type="pil",
                format="jpeg",
                height=512
            )
            status_output = gr.Textbox(
                label="Status",
                interactive=False
            )
    
    with gr.Accordion("⚙️ Advanced Settings", open=False):
        negative_prompt = gr.Textbox(
            label="Negative Prompt",
            placeholder="What to avoid (optional)",
            max_lines=1
        )
        with gr.Row():
            randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
            seed = gr.Number(label="Seed", value=0, precision=0)
        guidance_scale = gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="Guidance Scale")
        num_inference_steps = gr.Slider(1, 4, value=1, step=1, label="Inference Steps")

    generate_btn.click(
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            guidance_scale,
            num_inference_steps
        ],
        outputs=[output_image, status_output]
    )
    
    clear_btn.click(
        fn=lambda: [None, ""],
        outputs=[output_image, status_output]
    )

if __name__ == "__main__":
    demo.queue(max_size=4)  # Increased queue for better throughput
    demo.launch(server_name="0.0.0.0", server_port=7860)