File size: 8,332 Bytes
b99026f
 
 
8f41d53
b99026f
 
 
8f41d53
057b9bb
b99026f
 
091164c
7c0653d
057b9bb
 
 
 
 
c7fda9c
057b9bb
b99026f
 
 
091164c
b99026f
 
 
 
 
 
 
 
 
 
 
 
091164c
b99026f
 
 
 
 
 
 
 
 
 
 
c7fda9c
 
091164c
b99026f
 
 
 
 
 
 
091164c
 
b99026f
c7fda9c
b99026f
091164c
b99026f
 
 
057b9bb
b99026f
 
c7fda9c
b99026f
057b9bb
c7fda9c
b99026f
057b9bb
c7fda9c
b99026f
 
 
 
 
c7fda9c
b99026f
 
 
 
091164c
b99026f
 
 
 
 
 
c7fda9c
b99026f
 
 
 
 
 
091164c
 
b99026f
 
 
 
 
 
 
 
 
 
091164c
b99026f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f41d53
b99026f
 
091164c
b99026f
 
 
 
 
 
 
 
 
 
 
8f41d53
b99026f
 
 
 
8f41d53
b99026f
 
 
 
 
 
 
 
8f41d53
b99026f
 
 
 
 
 
 
 
 
8f41d53
b99026f
 
 
8f41d53
b99026f
 
 
 
 
 
 
8f41d53
b99026f
 
 
8f41d53
b99026f
 
 
 
 
 
8f41d53
b99026f
 
 
 
 
 
057b9bb
 
 
b99026f
 
 
 
057b9bb
 
 
b99026f
 
057b9bb
b99026f
 
8f41d53
b99026f
057b9bb
 
 
 
 
 
 
 
 
 
 
 
 
c7fda9c
057b9bb
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import torch
from transformers import pipeline
import gradio as gr
import asyncio
import ipaddress
from typing import Tuple

# تعيين المتغيرات البيئية لتهيئة PyTorch لاستخدام الـ GPU إذا كان متاحًا
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"

# الحصول على التوكن من البيئة
token = os.getenv("HF_TOKEN")

# إعداد الأنابيب للموديلات المختلفة باستخدام PyTorch
device = 0 if torch.cuda.is_available() else -1
Najeb_pipeline = pipeline("text-generation", model="sohiebwedyan/NAJEB_BOT", token=token, device=device)
gpt2_pipeline = pipeline("text-generation", model="Qwen/Qwen-1_8B-Chat", device=device, trust_remote_code=True)
#llama2_pipeline = pipeline("text-generation", model="Harikrishnan46624/finetuned_llama2-1.1b-chat", device=device)
summarization_pipeline = pipeline("summarization", model="Falconsai/text_summarization", device=device)

previous_questions = []

# توليد الردود باستخدام GPT-2
async def generate_gpt2(question, max_length, num_beams, temperature):
    return gpt2_pipeline(
        question,
        max_length=max_length,
        num_return_sequences=1,
        num_beams=num_beams,
        do_sample=True,
        top_k=50,
        top_p=0.95,
        temperature=temperature
    )[0]['generated_text']

# توليد الردود باستخدام Najeb
async def generate_Najeb(question, max_length, num_beams, temperature):
    return Najeb_pipeline(
        question,
        max_length=max_length,
        num_return_sequences=1,
        num_beams=num_beams,
        do_sample=True,
        top_k=30,
        top_p=0.85,
        temperature=temperature
    )[0]['generated_text']
    
'''
# توليد الردود باستخدام LLaMA 2
async def generate_llama2(question, max_length, num_beams, temperature):
    return llama2_pipeline(
        question,
        max_length=max_length,
        num_return_sequences=1,
        num_beams=num_beams,
        do_sample=True,
        top_k=50,
        top_p=0.95,
        temperature=temperature
    )[0]['generated_text']'''

# التعامل مع الردود بشكل غير متزامن
async def generate_responses_async(question, max_length=128, num_beams=2, temperature=0.5):
    previous_questions.append(question)

    # إنشاء المهام بشكل غير متزامن لتوليد الردود من الموديلات المختلفة
    gpt2_task = asyncio.create_task(generate_gpt2(question, max_length, num_beams, temperature))
    Najeb_task = asyncio.create_task(generate_Najeb(question, max_length, num_beams, temperature))
    #llama2_task = asyncio.create_task(generate_llama2(question, max_length, num_beams, temperature))

    # تجميع الردود من جميع الموديلات
    gpt2_response, Najeb_response = await asyncio.gather(gpt2_task, Najeb_task, llama2_task)

    # دمج الردود و تلخيصها
    combined_responses = f"GPT-2: {gpt2_response}\nNajeb: {Najeb_response}"
    summarized_response = summarization_pipeline(combined_responses, max_length=150, min_length=50, do_sample=False)[0]['summary_text']

    return {
        "GPT-2 Answer": gpt2_response,
        "Najeb Answer": Najeb_response,
        #"LLaMA 2 Answer": llama2_response,
        "Summarized Answer": summarized_response,
        "Previous Questions": "\n".join(previous_questions[-5:])
    }

# تحديد طريقة الحساب بناءً على المدخل
def handle_mode_selection(mode, input_text, max_length, num_beams, temperature):
    if mode == "AI Question Answering":
        result = asyncio.run(generate_responses_async(input_text, max_length, num_beams, temperature))
        return (
            f"**GPT-2 Model Response:**\n{result['GPT-2 Answer']}",
            f"**Najeb Model Response:**\n{result['Najeb Answer']}",
            #f"**LLaMA 2 Model Response:**\n{result['LLaMA 2 Answer']}",
            f"**Summarized Response:**\n{result['Summarized Answer']}",
            f"**Previous Questions:**\n{result['Previous Questions']}"
        )
    else:
        subnet_result = calculate_subnet(input_text)
        return subnet_result, "", "", "", ""

# الحصول على الشبكة وعنوان الـ IP
def get_network(ip_input: str) -> Tuple[ipaddress.IPv4Network, str]:
    try:
        if ip_input.count("/") == 0:
            ip_input += "/24"
        net = ipaddress.IPv4Network(ip_input, strict=False)
        ip = ip_input.split("/")[0]
        return (net, ip)
    except ValueError:
        return None, None

# حساب الشبكة الفرعية
def calculate_subnet(ip_input: str) -> str:
    network, ip = get_network(ip_input)
    if network is None or ip is None:
        return "Invalid IP Address or Subnet!"

    network_address = network.network_address
    broadcast_address = network.broadcast_address
    usable_hosts = list(network.hosts())
    num_usable_hosts = len(usable_hosts)
    usable_hosts_range = f"{usable_hosts[0]} - {usable_hosts[-1]}" if usable_hosts else "NA"

    octets = str(ip).split('.')
    binary_octets = [bin(int(octet))[2:].zfill(8) for octet in octets]
    bin_ip = '.'.join(binary_octets)

    bin_addr = str(bin(int(network_address))[2:].zfill(32))
    bin_addr = '.'.join([bin_addr[i:i+8] for i in range(0, len(bin_addr), 8)])

    bin_mask = str(bin(int(network.netmask))[2:].zfill(32))
    bin_mask = '.'.join([bin_mask[i:i+8] for i in range(0, len(bin_mask), 8)])

    result = f"""
IP Address:             {ip}
Address (bin):          {bin_ip}
Network Address:        {network_address}
Network Address (bin):  {bin_addr}
Netmask:                {network.netmask}
Netmask (bin):          {bin_mask}
CIDR Notation:          {network.prefixlen}
Broadcast Address:      {broadcast_address}
Usable IP Range:        {usable_hosts_range}
Number of Hosts:        {network.num_addresses:,d}
Number of Usable Hosts: {num_usable_hosts:,d}
Wildcard Mask:          {network.hostmask}
Private IP:             {network.is_private}
"""
    return result.strip()

# تحديد التصميم المخصص
custom_css = """
body {
    background-color: #f0f8ff;
    font-family: 'Arial', sans-serif;
    color: #333;
}

h1 {
    text-align: center;
    color: #0066cc;
}

p {
    text-align: center;
    color: #333;
}

.gradio-container {
    width: 80%;
    margin: auto;
    background-color: rgba(255, 255, 255, 0.8);
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
    padding: 20px;
    border-radius: 10px;
}

.gr-button {
    background-color: #0066cc;
    color: white;
    border: none;
    border-radius: 5px;
    padding: 10px;
    cursor: pointer;
    transition: background-color 0.3s ease;
}

.gr-button:hover {
    background-color: #004c99;
}

.gr-textbox {
    border: 2px solid #0066cc;
    border-radius: 5px;
    padding: 10px;
    background-color: #fff;
    color: #333;
}

.gr-slider {
    color: #0066cc;
}

.gr-json {
    background-color: rgba(240, 248, 255, 0.8);
    border-radius: 10px;
    padding: 10px;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}

#image-container {
    text-align: center;
    position: relative;
}

#image-container img {
    width: 100%;
    max-width: 500px;
    margin-bottom: 10px;
}

#image-container button {
    position: absolute;
    top: 10px;
    left: 10px;
    background-color: rgba(0, 0, 0, 0.5);
    color: white;
    border: none;
    padding: 5px 10px;
    cursor: pointer;
}
"""

# إعداد واجهة Gradio
gr.Interface(
    fn=handle_mode_selection,
    inputs=[
        gr.Dropdown(choices=["AI Question Answering", "Subnet Calculation"], label="Select Mode"),
        gr.Textbox(label="Input", placeholder="Ask your question or enter an IP address/subnet..."),
        gr.Slider(minimum=50, maximum=1024, step=1, value=128, label="Max Length"),
        gr.Slider(minimum=1, maximum=10, step=1, value=2, label="Num Beams"),
        gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.5, label="Temperature")
    ],
    outputs=[
        gr.Markdown(label="GPT-2 Answer"),
        gr.Markdown(label="Najeb Answer"),
        #gr.Markdown(label="LLaMA 2 Answer"),
        gr.Markdown(label="Summarized Answer"),
        gr.Markdown(label="Previous Questions")
    ],
    css=custom_css,
    live=True
).launch(debug=True)