File size: 9,142 Bytes
b99026f
 
 
8f41d53
b99026f
 
 
e57e114
8f41d53
b99026f
 
e57e114
 
 
1c0599d
e57e114
 
1c0599d
e57e114
 
1c0599d
e57e114
 
 
 
 
 
 
057b9bb
b99026f
 
 
7d1ffa9
b99026f
 
 
 
 
 
 
e57e114
 
b99026f
 
 
 
 
 
 
 
 
 
 
 
 
 
e57e114
b99026f
 
 
 
 
 
 
e57e114
 
b99026f
e57e114
 
b99026f
 
e57e114
 
 
b99026f
 
 
 
e57e114
 
 
 
 
 
 
 
 
 
b99026f
 
 
 
 
e57e114
 
 
 
 
b99026f
 
 
091164c
b99026f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e57e114
b99026f
 
 
 
 
 
e57e114
b99026f
 
 
 
 
 
 
 
 
 
e57e114
b99026f
 
 
 
 
 
 
 
 
 
 
 
 
 
8f41d53
b99026f
 
e57e114
 
 
 
 
 
 
 
 
 
 
b99026f
 
 
 
 
 
 
 
 
 
 
8f41d53
b99026f
 
 
 
8f41d53
b99026f
 
 
 
 
 
 
 
8f41d53
b99026f
 
 
 
 
 
 
 
 
8f41d53
b99026f
 
 
8f41d53
b99026f
 
 
 
 
 
 
8f41d53
b99026f
 
 
8f41d53
b99026f
 
 
 
 
 
8f41d53
e57e114
b99026f
 
 
 
 
 
e57e114
 
 
b99026f
 
 
 
e57e114
 
 
 
b99026f
 
e57e114
 
b99026f
e57e114
 
 
 
 
 
b99026f
8f41d53
b99026f
e57e114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import os
import torch
from transformers import pipeline
import gradio as gr
import asyncio
import ipaddress
from typing import Tuple
from accelerate import Accelerator

os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"

accelerator = Accelerator()

gpt2_pipeline = accelerator.prepare(
    pipeline("text-generation", model="Qwen/Qwen-1_8B-Chat", device=accelerator.device , trust_remote_code=True)
)
Najeb_pipeline = accelerator.prepare(
    pipeline("text-generation", model="najeebjust/Najeeb", device=accelerator.device , trust_remote_code=True)
)
llama2_pipeline = accelerator.prepare(
    pipeline("text-generation", model="Harikrishnan46624/finetuned_llama2-1.1b-chat", device=accelerator.device , trust_remote_code=True)
)
'''
gpt2_pipeline = pipeline("text-generation", model="Qwen/Qwen-1_8B-Chat", device=0 if torch.cuda.is_available() else -1, trust_remote_code=True)
Najeb_pipeline = pipeline("text-generation", model="najeebjust/Najeeb", device=0 if torch.cuda.is_available() else -1)
llama2_pipeline = pipeline("text-generation", model="Harikrishnan46624/finetuned_llama2-1.1b-chat", device=0 if torch.cuda.is_available() else -1)
'''
summarization_pipeline = pipeline("summarization", model="Falconsai/text_summarization", device=0 if torch.cuda.is_available() else -1)


previous_questions = []


async def generate_gpt2(question, max_length, num_beams, temperature):
    return gpt2_pipeline(
        question,
        max_length=max_length,
        num_return_sequences=1,
        num_beams=num_beams,
        do_sample=True,
        top_k=30,
        top_p=0.9,
        temperature=temperature
    )[0]['generated_text']

async def generate_Najeb(question, max_length, num_beams, temperature):
    return Najeb_pipeline(
        question,
        max_length=max_length,
        num_return_sequences=1,
        num_beams=num_beams,
        do_sample=True,
        top_k=30,
        top_p=0.85,
        temperature=temperature
    )[0]['generated_text']

async def generate_llama2(question, max_length, num_beams, temperature):
    return llama2_pipeline(
        question,
        max_length=max_length,
        num_return_sequences=1,
        num_beams=num_beams,
        do_sample=True,
        top_k=30,
        top_p=0.9,
        temperature=temperature
    )[0]['generated_text']


async def generate_responses_async(question, max_length=128, num_beams=2, temperature=0.5):
    responses = {}


    previous_questions.append(question)

    gpt2_task = asyncio.create_task(generate_gpt2(question, max_length, num_beams, temperature))
    Najeb_task = asyncio.create_task(generate_Najeb(question, max_length, num_beams, temperature))
    llama2_task = asyncio.create_task(generate_llama2(question, max_length, num_beams, temperature))

    gpt2_response, Najeb_response, llama2_response = await asyncio.gather(gpt2_task, Najeb_task, llama2_task)

    responses['GPT-2'] = gpt2_response
    responses['Najeb '] = Najeb_response
    responses['LLaMA 2'] = llama2_response


    combined_responses = f"GPT-2: {gpt2_response}\nNajeb: {Najeb_response}\nLLaMA 2: {llama2_response}"


    summarized_response = summarization_pipeline(combined_responses, max_length=150, min_length=50, do_sample=False)[0]['summary_text']

    return {

        "Najeb Answering Response": Najeb_response,
        "GPT-2 Answering Response": gpt2_response,
        "LLaMA 2 Answering Response": llama2_response,
        "Summarized Answering Response": summarized_response,
        "Previous Questions": "\n".join(previous_questions[-5:])
    }


def get_network(ip_input: str) -> Tuple[ipaddress.IPv4Network, str]:
    try:
        if ip_input.count("/") == 0:
            ip_input += "/24"
        net = ipaddress.IPv4Network(ip_input, strict=False)
        ip = ip_input.split("/")[0]
        return (net, ip)
    except ValueError:
        return None, None

def calculate_subnet(ip_input: str) -> str:
    network, ip = get_network(ip_input)
    if network is None or ip is None:
        return "Invalid IP Address or Subnet!"


    network_address = network.network_address
    broadcast_address = network.broadcast_address
    usable_hosts = list(network.hosts())
    num_usable_hosts = len(usable_hosts)
    usable_hosts_range = f"{usable_hosts[0]} - {usable_hosts[-1]}" if usable_hosts else "NA"


    octets = str(ip).split('.')
    binary_octets = [bin(int(octet))[2:].zfill(8) for octet in octets]
    bin_ip = '.'.join(binary_octets)

    bin_addr = str(bin(int(network_address))[2:].zfill(32))
    bin_addr = '.'.join([bin_addr[i:i+8] for i in range(0, len(bin_addr), 8)])

    bin_mask = str(bin(int(network.netmask))[2:].zfill(32))
    bin_mask = '.'.join([bin_mask[i:i+8] for i in range(0, len(bin_mask), 8)])


    result = f"""
IP Address:             {ip}
Address (bin):          {bin_ip}
Network Address:        {network_address}
Network Address (bin):  {bin_addr}
Netmask:                {network.netmask}
Netmask (bin):          {bin_mask}
CIDR Notation:          {network.prefixlen}
Broadcast Address:      {broadcast_address}
Usable IP Range:        {usable_hosts_range}
Number of Hosts:        {network.num_addresses:,d}
Number of Usable Hosts: {num_usable_hosts:,d}
Wildcard Mask:          {network.hostmask}
Private IP:             {network.is_private}
"""
    return result.strip()



def handle_mode_selection(mode, input_text, max_length, num_beams, temperature):
    if mode == "AI Question Answering":
        result = asyncio.run(generate_responses_async(input_text, max_length, num_beams, temperature))
        return result, ""
    else:
        subnet_result = calculate_subnet(input_text)
        return {"Subnet Calculation Result": subnet_result}, ""


custom_css = """
body {
    background-color: #f0f8ff;
    font-family: 'Arial', sans-serif;
    color: #333;
}

h1 {
    text-align: center;
    color: #0066cc;
}

p {
    text-align: center;
    color: #333;
}

.gradio-container {
    width: 80%;
    margin: auto;
    background-color: rgba(255, 255, 255, 0.8);
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
    padding: 20px;
    border-radius: 10px;
}

.gr-button {
    background-color: #0066cc;
    color: white;
    border: none;
    border-radius: 5px;
    padding: 10px;
    cursor: pointer;
    transition: background-color 0.3s ease;
}

.gr-button:hover {
    background-color: #004c99;
}

.gr-textbox {
    border: 2px solid #0066cc;
    border-radius: 5px;
    padding: 10px;
    background-color: #fff;
    color: #333;
}

.gr-slider {
    color: #0066cc;
}

.gr-json {
    background-color: rgba(240, 248, 255, 0.8);
    border-radius: 10px;
    padding: 10px;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}


#image-container {
    text-align: center;
    position: relative;
}

#image-container img {
    width: 1400px;
    border-radius: 10px;
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}

#image-container button {
    position: absolute;
    top: 50%;
    left: 50%;
    transform: translate(-50%, -50%);
    background-color: rgba(0, 102, 204, 0.8);
    color: white;
    border: none;
    padding: 10px 20px;
    border-radius: 5px;
    cursor: pointer;
    font-size: 16px;
    transition: background-color 0.3s ease;
}

#image-container button:hover {
    background-color: rgba(0, 76, 153, 0.8);
}
"""


scroll_js = """
<script>
    function scrollToTop() {
        document.getElementById('target-section').scrollIntoView({behavior: 'smooth'});
    }
</script>
"""


iface = gr.Blocks(css=custom_css)

with iface:
    gr.Markdown(f"<h1>Welcome to Najeb</h1><p>AI Question & Subnet Calculator, Enter your question or IP address to generate answers or calculate subnets.</p>")


    gr.HTML(f"""
    <div id="image-container">
        <img src="https://news.cornell.edu/sites/default/files/styles/story_thumbnail_xlarge/public/2024-07/robot-1280x720_0.jpg?itok=AF6MakCq" alt="AI Image">
        <button onclick="scrollToTop()">Go to Top</button>
    </div>
    {scroll_js}  <!-- Adding the JS to handle scrolling -->
    """)


    gr.Markdown("<div id='target-section'></div>")

    with gr.Row():
        mode_selector = gr.Radio(["AI Question Answering", "Subnet Calculation"], label="Select Mode", value="AI Question Answering")

    with gr.Row():
        with gr.Column():
            input_text = gr.Textbox(label="Enter your question or IP", placeholder="Type here...", lines=2)
            max_length_slider = gr.Slider(minimum=50, maximum=1024, value=128, label="Max Length")
            num_beams_slider = gr.Slider(minimum=1, maximum=10, value=2, label="Number of Beams", step=1)
            temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.5, label="Temperature", step=0.1)
            submit_button = gr.Button("Submit")

        with gr.Column():
            output_box = gr.JSON(label="Response Output")
            previous_questions_box = gr.Markdown("### Previous Questions\n")

    submit_button.click(
        handle_mode_selection,
        inputs=[mode_selector, input_text, max_length_slider, num_beams_slider, temperature_slider],
        outputs=[output_box, previous_questions_box]
    )


iface.launch(share=True)