NAJEB / app.py
sohiebwedyan's picture
Update app.py
c7fda9c verified
raw
history blame
8.33 kB
import os
import torch
from transformers import pipeline
import gradio as gr
import asyncio
import ipaddress
from typing import Tuple
# تعيين المتغيرات البيئية لتهيئة PyTorch لاستخدام الـ GPU إذا كان متاحًا
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
# الحصول على التوكن من البيئة
token = os.getenv("HF_TOKEN")
# إعداد الأنابيب للموديلات المختلفة باستخدام PyTorch
device = 0 if torch.cuda.is_available() else -1
Najeb_pipeline = pipeline("text-generation", model="sohiebwedyan/NAJEB_BOT", token=token, device=device)
gpt2_pipeline = pipeline("text-generation", model="Qwen/Qwen-1_8B-Chat", device=device, trust_remote_code=True)
#llama2_pipeline = pipeline("text-generation", model="Harikrishnan46624/finetuned_llama2-1.1b-chat", device=device)
summarization_pipeline = pipeline("summarization", model="Falconsai/text_summarization", device=device)
previous_questions = []
# توليد الردود باستخدام GPT-2
async def generate_gpt2(question, max_length, num_beams, temperature):
return gpt2_pipeline(
question,
max_length=max_length,
num_return_sequences=1,
num_beams=num_beams,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=temperature
)[0]['generated_text']
# توليد الردود باستخدام Najeb
async def generate_Najeb(question, max_length, num_beams, temperature):
return Najeb_pipeline(
question,
max_length=max_length,
num_return_sequences=1,
num_beams=num_beams,
do_sample=True,
top_k=30,
top_p=0.85,
temperature=temperature
)[0]['generated_text']
'''
# توليد الردود باستخدام LLaMA 2
async def generate_llama2(question, max_length, num_beams, temperature):
return llama2_pipeline(
question,
max_length=max_length,
num_return_sequences=1,
num_beams=num_beams,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=temperature
)[0]['generated_text']'''
# التعامل مع الردود بشكل غير متزامن
async def generate_responses_async(question, max_length=128, num_beams=2, temperature=0.5):
previous_questions.append(question)
# إنشاء المهام بشكل غير متزامن لتوليد الردود من الموديلات المختلفة
gpt2_task = asyncio.create_task(generate_gpt2(question, max_length, num_beams, temperature))
Najeb_task = asyncio.create_task(generate_Najeb(question, max_length, num_beams, temperature))
#llama2_task = asyncio.create_task(generate_llama2(question, max_length, num_beams, temperature))
# تجميع الردود من جميع الموديلات
gpt2_response, Najeb_response = await asyncio.gather(gpt2_task, Najeb_task, llama2_task)
# دمج الردود و تلخيصها
combined_responses = f"GPT-2: {gpt2_response}\nNajeb: {Najeb_response}"
summarized_response = summarization_pipeline(combined_responses, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
return {
"GPT-2 Answer": gpt2_response,
"Najeb Answer": Najeb_response,
#"LLaMA 2 Answer": llama2_response,
"Summarized Answer": summarized_response,
"Previous Questions": "\n".join(previous_questions[-5:])
}
# تحديد طريقة الحساب بناءً على المدخل
def handle_mode_selection(mode, input_text, max_length, num_beams, temperature):
if mode == "AI Question Answering":
result = asyncio.run(generate_responses_async(input_text, max_length, num_beams, temperature))
return (
f"**GPT-2 Model Response:**\n{result['GPT-2 Answer']}",
f"**Najeb Model Response:**\n{result['Najeb Answer']}",
#f"**LLaMA 2 Model Response:**\n{result['LLaMA 2 Answer']}",
f"**Summarized Response:**\n{result['Summarized Answer']}",
f"**Previous Questions:**\n{result['Previous Questions']}"
)
else:
subnet_result = calculate_subnet(input_text)
return subnet_result, "", "", "", ""
# الحصول على الشبكة وعنوان الـ IP
def get_network(ip_input: str) -> Tuple[ipaddress.IPv4Network, str]:
try:
if ip_input.count("/") == 0:
ip_input += "/24"
net = ipaddress.IPv4Network(ip_input, strict=False)
ip = ip_input.split("/")[0]
return (net, ip)
except ValueError:
return None, None
# حساب الشبكة الفرعية
def calculate_subnet(ip_input: str) -> str:
network, ip = get_network(ip_input)
if network is None or ip is None:
return "Invalid IP Address or Subnet!"
network_address = network.network_address
broadcast_address = network.broadcast_address
usable_hosts = list(network.hosts())
num_usable_hosts = len(usable_hosts)
usable_hosts_range = f"{usable_hosts[0]} - {usable_hosts[-1]}" if usable_hosts else "NA"
octets = str(ip).split('.')
binary_octets = [bin(int(octet))[2:].zfill(8) for octet in octets]
bin_ip = '.'.join(binary_octets)
bin_addr = str(bin(int(network_address))[2:].zfill(32))
bin_addr = '.'.join([bin_addr[i:i+8] for i in range(0, len(bin_addr), 8)])
bin_mask = str(bin(int(network.netmask))[2:].zfill(32))
bin_mask = '.'.join([bin_mask[i:i+8] for i in range(0, len(bin_mask), 8)])
result = f"""
IP Address: {ip}
Address (bin): {bin_ip}
Network Address: {network_address}
Network Address (bin): {bin_addr}
Netmask: {network.netmask}
Netmask (bin): {bin_mask}
CIDR Notation: {network.prefixlen}
Broadcast Address: {broadcast_address}
Usable IP Range: {usable_hosts_range}
Number of Hosts: {network.num_addresses:,d}
Number of Usable Hosts: {num_usable_hosts:,d}
Wildcard Mask: {network.hostmask}
Private IP: {network.is_private}
"""
return result.strip()
# تحديد التصميم المخصص
custom_css = """
body {
background-color: #f0f8ff;
font-family: 'Arial', sans-serif;
color: #333;
}
h1 {
text-align: center;
color: #0066cc;
}
p {
text-align: center;
color: #333;
}
.gradio-container {
width: 80%;
margin: auto;
background-color: rgba(255, 255, 255, 0.8);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
padding: 20px;
border-radius: 10px;
}
.gr-button {
background-color: #0066cc;
color: white;
border: none;
border-radius: 5px;
padding: 10px;
cursor: pointer;
transition: background-color 0.3s ease;
}
.gr-button:hover {
background-color: #004c99;
}
.gr-textbox {
border: 2px solid #0066cc;
border-radius: 5px;
padding: 10px;
background-color: #fff;
color: #333;
}
.gr-slider {
color: #0066cc;
}
.gr-json {
background-color: rgba(240, 248, 255, 0.8);
border-radius: 10px;
padding: 10px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
#image-container {
text-align: center;
position: relative;
}
#image-container img {
width: 100%;
max-width: 500px;
margin-bottom: 10px;
}
#image-container button {
position: absolute;
top: 10px;
left: 10px;
background-color: rgba(0, 0, 0, 0.5);
color: white;
border: none;
padding: 5px 10px;
cursor: pointer;
}
"""
# إعداد واجهة Gradio
gr.Interface(
fn=handle_mode_selection,
inputs=[
gr.Dropdown(choices=["AI Question Answering", "Subnet Calculation"], label="Select Mode"),
gr.Textbox(label="Input", placeholder="Ask your question or enter an IP address/subnet..."),
gr.Slider(minimum=50, maximum=1024, step=1, value=128, label="Max Length"),
gr.Slider(minimum=1, maximum=10, step=1, value=2, label="Num Beams"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.5, label="Temperature")
],
outputs=[
gr.Markdown(label="GPT-2 Answer"),
gr.Markdown(label="Najeb Answer"),
#gr.Markdown(label="LLaMA 2 Answer"),
gr.Markdown(label="Summarized Answer"),
gr.Markdown(label="Previous Questions")
],
css=custom_css,
live=True
).launch(debug=True)