Spaces:
Running
Running
import math | |
from typing import Optional | |
import numpy as np | |
import torch | |
from torch.nn.utils import remove_weight_norm | |
from torch.nn.utils.parametrizations import weight_norm | |
from torch.utils.checkpoint import checkpoint | |
LRELU_SLOPE = 0.1 | |
class MRFLayer(torch.nn.Module): | |
""" | |
A single layer of the Multi-Receptive Field (MRF) block. | |
This layer consists of two 1D convolutional layers with weight normalization | |
and Leaky ReLU activation in between. The first convolution has a dilation, | |
while the second has a dilation of 1. A skip connection is added from the input | |
to the output. | |
Args: | |
channels (int): The number of input and output channels. | |
kernel_size (int): The kernel size of the convolutional layers. | |
dilation (int): The dilation rate for the first convolutional layer. | |
""" | |
def __init__(self, channels, kernel_size, dilation): | |
super().__init__() | |
self.conv1 = weight_norm( | |
torch.nn.Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
padding=(kernel_size * dilation - dilation) // 2, | |
dilation=dilation, | |
) | |
) | |
self.conv2 = weight_norm( | |
torch.nn.Conv1d( | |
channels, channels, kernel_size, padding=kernel_size // 2, dilation=1 | |
) | |
) | |
def forward(self, x: torch.Tensor): | |
# new tensor | |
y = torch.nn.functional.leaky_relu(x, LRELU_SLOPE) | |
y = self.conv1(y) | |
# in-place call | |
y = torch.nn.functional.leaky_relu_(y, LRELU_SLOPE) | |
y = self.conv2(y) | |
return x + y | |
def remove_weight_norm(self): | |
remove_weight_norm(self.conv1) | |
remove_weight_norm(self.conv2) | |
class MRFBlock(torch.nn.Module): | |
""" | |
A Multi-Receptive Field (MRF) block. | |
This block consists of multiple MRFLayers with different dilation rates. | |
It applies each layer sequentially to the input. | |
Args: | |
channels (int): The number of input and output channels for the MRFLayers. | |
kernel_size (int): The kernel size for the convolutional layers in the MRFLayers. | |
dilations (list[int]): A list of dilation rates for the MRFLayers. | |
""" | |
def __init__(self, channels, kernel_size, dilations): | |
super().__init__() | |
self.layers = torch.nn.ModuleList() | |
for dilation in dilations: | |
self.layers.append(MRFLayer(channels, kernel_size, dilation)) | |
def forward(self, x: torch.Tensor): | |
for layer in self.layers: | |
x = layer(x) | |
return x | |
def remove_weight_norm(self): | |
for layer in self.layers: | |
layer.remove_weight_norm() | |
class SineGenerator(torch.nn.Module): | |
""" | |
Definition of sine generator | |
Generates sine waveforms with optional harmonics and additive noise. | |
Can be used to create harmonic noise source for neural vocoders. | |
Args: | |
samp_rate (int): Sampling rate in Hz. | |
harmonic_num (int): Number of harmonic overtones (default 0). | |
sine_amp (float): Amplitude of sine-waveform (default 0.1). | |
noise_std (float): Standard deviation of Gaussian noise (default 0.003). | |
voiced_threshold (float): F0 threshold for voiced/unvoiced classification (default 0). | |
""" | |
def __init__( | |
self, | |
samp_rate: int, | |
harmonic_num: int = 0, | |
sine_amp: float = 0.1, | |
noise_std: float = 0.003, | |
voiced_threshold: float = 0, | |
): | |
super(SineGenerator, self).__init__() | |
self.sine_amp = sine_amp | |
self.noise_std = noise_std | |
self.harmonic_num = harmonic_num | |
self.dim = self.harmonic_num + 1 | |
self.sampling_rate = samp_rate | |
self.voiced_threshold = voiced_threshold | |
def _f02uv(self, f0: torch.Tensor): | |
""" | |
Generates voiced/unvoiced (UV) signal based on the fundamental frequency (F0). | |
Args: | |
f0 (torch.Tensor): Fundamental frequency tensor of shape (batch_size, length, 1). | |
""" | |
# generate uv signal | |
uv = torch.ones_like(f0) | |
uv = uv * (f0 > self.voiced_threshold) | |
return uv | |
def _f02sine(self, f0_values: torch.Tensor): | |
""" | |
Generates sine waveforms based on the fundamental frequency (F0) and its harmonics. | |
Args: | |
f0_values (torch.Tensor): Tensor of fundamental frequency and its harmonics, | |
shape (batch_size, length, dim), where dim indicates | |
the fundamental tone and overtones. | |
""" | |
# convert to F0 in rad. The integer part n can be ignored | |
# because 2 * np.pi * n doesn't affect phase | |
rad_values = (f0_values / self.sampling_rate) % 1 | |
# initial phase noise (no noise for fundamental component) | |
rand_ini = torch.rand( | |
f0_values.shape[0], f0_values.shape[2], device=f0_values.device | |
) | |
rand_ini[:, 0] = 0 | |
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini | |
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad) | |
tmp_over_one = torch.cumsum(rad_values, 1) % 1 | |
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0 | |
cumsum_shift = torch.zeros_like(rad_values) | |
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 | |
sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi) | |
return sines | |
def forward(self, f0: torch.Tensor): | |
with torch.no_grad(): | |
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device) | |
# fundamental component | |
f0_buf[:, :, 0] = f0[:, :, 0] | |
for idx in np.arange(self.harmonic_num): | |
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2) | |
sine_waves = self._f02sine(f0_buf) * self.sine_amp | |
uv = self._f02uv(f0) | |
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 | |
noise = noise_amp * torch.randn_like(sine_waves) | |
sine_waves = sine_waves * uv + noise | |
return sine_waves, uv, noise | |
class SourceModuleHnNSF(torch.nn.Module): | |
""" | |
Generates harmonic and noise source features. | |
This module uses the SineGenerator to create harmonic signals based on the | |
fundamental frequency (F0) and merges them into a single excitation signal. | |
Args: | |
sample_rate (int): Sampling rate in Hz. | |
harmonic_num (int, optional): Number of harmonics above F0. Defaults to 0. | |
sine_amp (float, optional): Amplitude of sine source signal. Defaults to 0.1. | |
add_noise_std (float, optional): Standard deviation of additive Gaussian noise. Defaults to 0.003. | |
voiced_threshod (float, optional): Threshold to set voiced/unvoiced given F0. Defaults to 0. | |
""" | |
def __init__( | |
self, | |
sampling_rate: int, | |
harmonic_num: int = 0, | |
sine_amp: float = 0.1, | |
add_noise_std: float = 0.003, | |
voiced_threshold: float = 0, | |
): | |
super(SourceModuleHnNSF, self).__init__() | |
self.sine_amp = sine_amp | |
self.noise_std = add_noise_std | |
# to produce sine waveforms | |
self.l_sin_gen = SineGenerator( | |
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshold | |
) | |
# to merge source harmonics into a single excitation | |
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) | |
self.l_tanh = torch.nn.Tanh() | |
def forward(self, x: torch.Tensor): | |
sine_wavs, uv, _ = self.l_sin_gen(x) | |
sine_wavs = sine_wavs.to(dtype=self.l_linear.weight.dtype) | |
sine_merge = self.l_tanh(self.l_linear(sine_wavs)) | |
return sine_merge, None, None | |
class HiFiGANMRFGenerator(torch.nn.Module): | |
""" | |
HiFi-GAN generator with Multi-Receptive Field (MRF) blocks. | |
This generator takes an input feature sequence and fundamental frequency (F0) | |
as input and generates an audio waveform. It utilizes transposed convolutions | |
for upsampling and MRF blocks for feature refinement. It can also condition | |
on global conditioning features. | |
Args: | |
in_channel (int): Number of input channels. | |
upsample_initial_channel (int): Number of channels after the initial convolution. | |
upsample_rates (list[int]): List of upsampling rates for the transposed convolutions. | |
upsample_kernel_sizes (list[int]): List of kernel sizes for the transposed convolutions. | |
resblock_kernel_sizes (list[int]): List of kernel sizes for the convolutional layers in the MRF blocks. | |
resblock_dilations (list[list[int]]): List of lists of dilation rates for the MRF blocks. | |
gin_channels (int): Number of global conditioning input channels (0 if no global conditioning). | |
sample_rate (int): Sampling rate of the audio. | |
harmonic_num (int): Number of harmonics to generate. | |
checkpointing (bool): Whether to use checkpointing to save memory during training (default: False). | |
""" | |
def __init__( | |
self, | |
in_channel: int, | |
upsample_initial_channel: int, | |
upsample_rates: list[int], | |
upsample_kernel_sizes: list[int], | |
resblock_kernel_sizes: list[int], | |
resblock_dilations: list[list[int]], | |
gin_channels: int, | |
sample_rate: int, | |
harmonic_num: int, | |
checkpointing: bool = False, | |
): | |
super().__init__() | |
self.num_kernels = len(resblock_kernel_sizes) | |
self.checkpointing = checkpointing | |
self.f0_upsample = torch.nn.Upsample(scale_factor=np.prod(upsample_rates)) | |
self.m_source = SourceModuleHnNSF(sample_rate, harmonic_num) | |
self.conv_pre = weight_norm( | |
torch.nn.Conv1d( | |
in_channel, upsample_initial_channel, kernel_size=7, stride=1, padding=3 | |
) | |
) | |
self.upsamples = torch.nn.ModuleList() | |
self.noise_convs = torch.nn.ModuleList() | |
stride_f0s = [ | |
math.prod(upsample_rates[i + 1 :]) if i + 1 < len(upsample_rates) else 1 | |
for i in range(len(upsample_rates)) | |
] | |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
# handling odd upsampling rates | |
if u % 2 == 0: | |
# old method | |
padding = (k - u) // 2 | |
else: | |
padding = u // 2 + u % 2 | |
self.upsamples.append( | |
weight_norm( | |
torch.nn.ConvTranspose1d( | |
upsample_initial_channel // (2**i), | |
upsample_initial_channel // (2 ** (i + 1)), | |
kernel_size=k, | |
stride=u, | |
padding=padding, | |
output_padding=u % 2, | |
) | |
) | |
) | |
""" handling odd upsampling rates | |
# s k p | |
# 40 80 20 | |
# 32 64 16 | |
# 4 8 2 | |
# 2 3 1 | |
# 63 125 31 | |
# 9 17 4 | |
# 3 5 1 | |
# 1 1 0 | |
""" | |
stride = stride_f0s[i] | |
kernel = 1 if stride == 1 else stride * 2 - stride % 2 | |
padding = 0 if stride == 1 else (kernel - stride) // 2 | |
self.noise_convs.append( | |
torch.nn.Conv1d( | |
1, | |
upsample_initial_channel // (2 ** (i + 1)), | |
kernel_size=kernel, | |
stride=stride, | |
padding=padding, | |
) | |
) | |
self.mrfs = torch.nn.ModuleList() | |
for i in range(len(self.upsamples)): | |
channel = upsample_initial_channel // (2 ** (i + 1)) | |
self.mrfs.append( | |
torch.nn.ModuleList( | |
[ | |
MRFBlock(channel, kernel_size=k, dilations=d) | |
for k, d in zip(resblock_kernel_sizes, resblock_dilations) | |
] | |
) | |
) | |
self.conv_post = weight_norm( | |
torch.nn.Conv1d(channel, 1, kernel_size=7, stride=1, padding=3) | |
) | |
if gin_channels != 0: | |
self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1) | |
def forward( | |
self, x: torch.Tensor, f0: torch.Tensor, g: Optional[torch.Tensor] = None | |
): | |
f0 = self.f0_upsample(f0[:, None, :]).transpose(-1, -2) | |
har_source, _, _ = self.m_source(f0) | |
har_source = har_source.transpose(-1, -2) | |
# new tensor | |
x = self.conv_pre(x) | |
if g is not None: | |
# in-place call | |
x += self.cond(g) | |
for ups, mrf, noise_conv in zip(self.upsamples, self.mrfs, self.noise_convs): | |
# in-place call | |
x = torch.nn.functional.leaky_relu_(x, LRELU_SLOPE) | |
if self.training and self.checkpointing: | |
x = checkpoint(ups, x, use_reentrant=False) | |
else: | |
x = ups(x) | |
x += noise_conv(har_source) | |
def mrf_sum(x, layers): | |
return sum(layer(x) for layer in layers) / self.num_kernels | |
if self.training and self.checkpointing: | |
x = checkpoint(mrf_sum, x, mrf, use_reentrant=False) | |
else: | |
x = mrf_sum(x, mrf) | |
# in-place call | |
x = torch.nn.functional.leaky_relu_(x) | |
x = self.conv_post(x) | |
# in-place call | |
x = torch.tanh_(x) | |
return x | |
def remove_weight_norm(self): | |
remove_weight_norm(self.conv_pre) | |
for up in self.upsamples: | |
remove_weight_norm(up) | |
for mrf in self.mrfs: | |
mrf.remove_weight_norm() | |
remove_weight_norm(self.conv_post) | |