File size: 11,150 Bytes
53c9ab2
2091088
 
 
 
98cf098
2091088
 
a5b21b0
bd8ef23
494d2b1
98cf098
32ca932
e608162
 
 
494d2b1
934b06c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98cf098
934b06c
 
 
 
 
 
98cf098
 
2091088
98cf098
934b06c
 
 
2091088
c447195
2091088
98cf098
2091088
 
98cf098
 
2091088
934b06c
 
 
 
 
 
 
 
 
04b2e4a
 
 
 
 
 
934b06c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2091088
 
c447195
 
04b2e4a
 
 
 
 
 
 
98cf098
2091088
 
 
934b06c
 
7064432
 
934b06c
 
 
 
98cf098
934b06c
7064432
934b06c
7064432
934b06c
 
 
 
 
 
 
 
 
 
 
e608162
934b06c
 
 
7064432
934b06c
 
 
8e4b3a8
934b06c
 
 
 
 
e608162
32ca932
e608162
 
7064432
934b06c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e49a7aa
934b06c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98cf098
934b06c
 
 
 
98cf098
2091088
 
934b06c
 
 
2091088
98cf098
2091088
 
 
934b06c
 
ee80fee
98cf098
 
 
934b06c
 
98cf098
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import openai
import gradio as gr
from gradio.components import Audio, Textbox
import os
import re
import tiktoken
from transformers import GPT2Tokenizer
import whisper
import pandas as pd
from datetime import datetime, timezone, timedelta
import notion_df
import concurrent.futures
import nltk
from nltk.tokenize import sent_tokenize
nltk.download('punkt')


# # Define the tokenizer and model
# tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
# model = openai.api_key = os.environ["OPENAI_API_KEY"]

# # Define the initial message and messages list
# initmessage = 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'
# initial_message = {"role": "system", "content": 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'}
# messages = [initial_message]
# messages_rev = [initial_message]

# # Define the answer counter
# answer_count = 0

# # Define the Notion API key
# API_KEY = os.environ["API_KEY"]

import openai
import gradio as gr
from gradio.components import Audio, Textbox
import os
import re
import tiktoken
from transformers import GPT2Tokenizer
import whisper
import pandas as pd
from datetime import datetime, timezone, timedelta
import notion_df
import concurrent.futures
import nltk
from nltk.tokenize import sent_tokenize
nltk.download('punkt')
import spacy
from spacy import displacy
from gradio import Markdown
import threading


# Define the tokenizer and model

# openai.api_type = "azure"
# openai.api_base = "https://yena.openai.azure.com/"
# openai.api_version = "2022-12-01"


tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = openai.api_key = os.environ["OPENAI_API_KEY"]

# Define the initial message and messages list
initmessage = 'You are a MCAT Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'
initial_message = {"role": "system", "content": 'You are a MCAT Tutor. Pay especially attention to "testable" or "exam," or any related terms in the input and highlight them as "EXAM TOPIC." Respond ALWAYS quiz me with high yield and relevant qustions on the input and the answers layed out with layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. Expand on each point with great detail lists not sentence.'}

messages = [initial_message]
messages_rev = [initial_message]

# Define the answer counter
answer_count = 0

# Define the Notion API key
API_KEY = os.environ["API_KEY"]

# Define the answer counter
answer_count = 0

nlp = spacy.load("en_core_web_sm")
def process_nlp(system_message):
    # Colorize the system message text
    colorized_text = colorize_text(system_message['content'])
    return colorized_text

def train(text):
    now_et = datetime.now(timezone(timedelta(hours=-4)))
    published_date = now_et.strftime('%m-%d-%y %H:%M')
    df = pd.DataFrame([text])
    notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY)

def colorize_text(text):
    colorized_text = ""
    lines = text.split("\n")

    for line in lines:
        doc = nlp(line)
        for token in doc:
            if token.ent_type_:
                colorized_text += f'**{token.text_with_ws}**'
            elif token.pos_ == 'NOUN':
                colorized_text += f'<span style="color: #FF3300; background-color: transparent;">{token.text_with_ws}</span>'
            elif token.pos_ == 'VERB':
                colorized_text += f'<span style="color: #FFFF00; background-color: transparent;">{token.text_with_ws}</span>'
            elif token.pos_ == 'ADJ':
                colorized_text += f'<span style="color: #00CC00; background-color: transparent;">{token.text_with_ws}</span>'
            elif token.pos_ == 'ADV':
                colorized_text += f'<span style="color: #FF6600; background-color: transparent;">{token.text_with_ws}</span>'
            elif token.is_digit:
                colorized_text += f'<span style="color: #9900CC; background-color: transparent;">{token.text_with_ws}</span>'
            elif token.is_punct:
                colorized_text += f'<span style="color: #8B4513; background-color: transparent;">{token.text_with_ws}</span>'
            elif token.is_quote:
                colorized_text += f'<span style="color: #008080; background-color: transparent;">{token.text_with_ws}</span>'
            else:
                colorized_text += token.text_with_ws
        colorized_text += "<br>"

    return colorized_text


def colorize_and_update(system_message, submit_update):
    colorized_system_message = colorize_text(system_message['content'])
    submit_update(None, colorized_system_message)  # Pass the colorized_system_message as the second output

def update_text_output(system_message, submit_update):
    submit_update(system_message['content'], None)


def transcribe(audio, text, submit_update=None):

    global messages
    global answer_count
    transcript = {'text': ''} 
    input_text = []

    # Check if the first word of the first line is "COLORIZE"
    if text and text.split("\n")[0].split(" ")[0].strip().upper() == "COLORIZE":
        train(text)
        colorized_input = colorize_text(text)
        return text, colorized_input
    
    # Transcribe the audio if provided
    if audio is not None:
        audio_file = open(audio, "rb")
        transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en")

    # Tokenize the text input
    if text is not None:
        # Split the input text into sentences
        sentences = re.split("(?<=[.!?]) +", text)
    
        # Initialize a list to store the tokens
        input_tokens = []
    
        # Add each sentence to the input_tokens list
        for sentence in sentences:
            # Tokenize the sentence using the GPT-2 tokenizer
            sentence_tokens = tokenizer.encode(sentence)
            # Check if adding the sentence would exceed the token limit
            if len(input_tokens) + len(sentence_tokens) < 1440:
                # Add the sentence tokens to the input_tokens list
                input_tokens.extend(sentence_tokens)
            else:
                # If adding the sentence would exceed the token limit, truncate it
                sentence_tokens = sentence_tokens[:1440-len(input_tokens)]
                input_tokens.extend(sentence_tokens)
                break
        # Decode the input tokens into text
        input_text = tokenizer.decode(input_tokens)
    
        # Add the input text to the messages list
    messages.append({"role": "user", "content": transcript["text"]+input_text})


    # Check if the accumulated tokens have exceeded 2096
    num_tokens = sum(len(tokenizer.encode(message["content"])) for message in messages)
    if num_tokens > 2096:
        # Concatenate the chat history
        chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages if message['role'] != 'system'])

        # Append the number of tokens used to the end of the chat transcriptd
        chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"

        # Get the current time in Eastern Time (ET)
        now_et = datetime.now(timezone(timedelta(hours=-4)))
        # Format the time as string (YY-MM-DD HH:MM)
        published_date = now_et.strftime('%m-%d-%y %H:%M')

        # Upload the chat transcript to Notion
        df = pd.DataFrame([chat_transcript])
        notion_df.upload(df, 'https://www.notion.so/YENA-be569d0a40c940e7b6e0679318215790?pvs=4', title=str(published_date+'back_up'), api_key=API_KEY)

        # Reset the messages list and answer counter
        messages = [initial_message]
        messages.append({"role": "user", "content": initmessage})
        answer_count = 0
        # Add the input text to the messages list
        messages.append({"role": "user", "content": input_text})
    else:
        # Increment the answer counter
        answer_count += 1

    # Generate the system message using the OpenAI API
    with concurrent.futures.ThreadPoolExecutor() as executor:
        prompt = [{"text": f"{message['role']}: {message['content']}\n\n"} for message in messages]
        system_message = openai.ChatCompletion.create(
            model="gpt-4",
            messages=messages,
            max_tokens=2000
        )["choices"][0]["message"]

    # Immediately update the text output
    if submit_update:  # Check if submit_update is not None
        update_text_output(system_message, submit_update)

    # Add the system message to the messages list
    messages.append(system_message)

    # Add the system message to the beginning of the messages list
    messages_rev.insert(0, system_message)
    # Add the input text to the messages list
    messages_rev.insert(0, {"role": "user", "content": input_text + transcript["text"]})

    # Start a separate thread to process the colorization and update the Gradio interface
    if submit_update:  # Check if submit_update is not None
        colorize_thread = threading.Thread(target=colorize_and_update, args=(system_message, submit_update))
        colorize_thread.start()

    # Return the system message immediately

    chat_transcript = system_message['content']

    # with open("./MSK_PS_conversation_history.txt", "a") as f:
    #     f.write(chat_transcript)
    
    # Get the current time in Eastern Time (ET)
    now_et = datetime.now(timezone(timedelta(hours=-4)))
    # Format the time as string (YY-MM-DD HH:MM)
    published_date = now_et.strftime('%m-%d-%y %H:%M')

    # Upload the chat transcript to Notion
    df = pd.DataFrame([chat_transcript])
    notion_df.upload(df, 'https://www.notion.so/YENA-be569d0a40c940e7b6e0679318215790?pvs=4', title=str(published_date+'back_up'), api_key=API_KEY)
    
    return system_message['content'], colorize_text(system_message['content'])



# Define the input and output components for Gradio
audio_input = Audio(source="microphone", type="filepath", label="Record your message")
text_input = Textbox(label="Type your message", max_length=4096)
# Define the input and output components for Gradio
output_text = Textbox(label="Text Output")
output_html = Markdown()

# Define the Gradio interface
iface = gr.Interface(
    fn=transcribe,
    inputs=[audio_input, text_input],
    outputs=[output_text, output_html],  # Add both output components
    title="Hold On, Pain Ends (HOPE)",
    description="Talk to Your Tutor MCAT HOPE. If you want to colorize your note, type COLORIZE in the first line of your input.",
    theme="compact",
    layout="vertical",
    allow_flagging=False
)


# Run the Gradio interface
iface.launch()