File size: 22,522 Bytes
41dd9cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b921295
41dd9cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8f1b7a
48a378e
41dd9cd
 
 
 
 
5ec7b76
41dd9cd
e8f1b7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41dd9cd
5ec7b76
41dd9cd
 
4190d92
41dd9cd
 
 
4190d92
41dd9cd
 
 
 
 
 
 
 
 
 
4190d92
41dd9cd
 
 
 
5ec7b76
 
 
41dd9cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7a9171
41dd9cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00636a0
b7a9171
00636a0
 
 
41dd9cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00636a0
 
41dd9cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6515f2
41dd9cd
 
 
 
 
 
 
 
 
e8f1b7a
41dd9cd
f1d36b6
41dd9cd
e8f1b7a
41dd9cd
f1d36b6
e8f1b7a
 
41dd9cd
f1d36b6
41dd9cd
e8f1b7a
41dd9cd
f1d36b6
41dd9cd
e8f1b7a
41dd9cd
f1d36b6
41dd9cd
4190d92
 
 
 
 
 
e8f1b7a
41dd9cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8f1b7a
41dd9cd
 
 
 
 
 
 
 
 
e98f9af
 
 
 
e8f1b7a
e98f9af
 
 
 
 
 
e8f1b7a
e98f9af
41dd9cd
 
 
 
 
 
 
 
e8f1b7a
 
 
 
 
 
41dd9cd
 
 
 
 
4190d92
1afdceb
 
 
4190d92
1afdceb
 
 
 
41dd9cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7a9171
41dd9cd
 
 
 
 
e8f1b7a
41dd9cd
 
 
 
 
 
 
 
 
 
e8f1b7a
41dd9cd
 
 
e8f1b7a
41dd9cd
 
 
 
 
 
 
e8f1b7a
41dd9cd
 
 
e8f1b7a
41dd9cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8f1b7a
41dd9cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import os
import re
from datetime import datetime, timedelta
from threading import Thread  
import asyncio
import requests
import streamlit as st
import json
import time
from bs4 import BeautifulSoup
from PIL import Image
import base64
import io
import google_free_search
from langchain.vectorstores import FAISS # For storing embeddings
from langchain.chains import RetrievalQA, ConversationalRetrievalChain # Chains for QA
from langchain.utilities import TextRequestsWrapper, WikipediaAPIWrapper # Tools
from langchain.document_loaders import DirectoryLoader, PyMuPDFLoader, PyPDFLoader, TextLoader, WebBaseLoader # Loaders
from langchain.document_loaders.recursive_url_loader import RecursiveUrlLoader # Load URLs
from langchain.schema import AIMessage, HumanMessage, get_buffer_string # Chat history
from langchain.text_splitter import RecursiveCharacterTextSplitter # Split text  
from langchain.llms import TextGen, LlamaCpp, CTransformers # Language models
from langchain.memory import ConversationBufferMemory # Chat memory
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler # Logging
from langchain.agents import Tool, load_tools # Tools
from langchain.input import get_colored_text # Console colors
from langchain.embeddings import (
    HuggingFaceEmbeddings, 
    LlamaCppEmbeddings,
    SentenceTransformerEmbeddings,
)
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline # Image generation
from typing import Any, Dict, List  
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
import inspect
from AirLLM import AirLLM

# Config  
EMBD_CHUNK_SIZE = 512  
AI_NAME = "Agent Llama"
USER_NAME = "Buddy"
MODELS_DIR = "./models"

def validate_and_fix_params(tool_name, params_list):
    try:
        # Create a list to store the validated and fixed parameters
        validated_params = []
        n_param = 0
        while n_param < len(params_list) and len(validated_params) < 1:        
          val = str(params_list[n_param]).replace("(", "").replace(")", "").replace("\"", "").replace("#", "").strip()
          n_param = n_param + 1
          if len(val) > 2:
            validated_params.append(val)

        if (n_param < len(params_list) and tool_name == "ImageGenerator" and len(validated_params) < 3):
          while n_param < len(params_list):        
            val = int(str(params_list[n_param]).replace("(", "").replace(")", "").replace("\"", "").replace("#", "").strip())
            n_param = n_param + 1
            if val > 0:
              validated_params.append(val)
          
        return validated_params
    except Exception as e:
        # Handle any exceptions that may occur during parameter validation
        print(f"Error parsing params: {str(e)}")
        return []
      
# Helper to load LM  
def create_llm(model_id=f"{MODELS_DIR}/deepseek-coder-6.7b-instruct.Q5_K_M.gguf", load_4bit=False, load_8bit=False, ctx_len = 8192, temperature=0.5, top_p=0.95):
  if (model_id.startswith("http")):
    print(f"Creating TextGen LLM base_url:{model_id}")
    return TextGen(model_url=model_id, seed=79, callbacks=[StreamingStdOutCallbackHandler()])
  if (os.path.exists(model_id)):
    try:       
      print(f"Creating LlamaCpp LLM model_id:{model_id}")
      return LlamaCpp(model_path=model_id, verbose=True, n_batch=521, seed=79, alpha_value=1,rope_freq_base=10000,compress_pos_emb=ctx_len / 4096, n_ctx=ctx_len, load_in_4bit=load_4bit, load_in_8bit=load_8bit, temperature=temperature,top_p=top_p)                
    except Exception as ex:
      try:       
        print(f"Creating CTransformers LLM model_id:{model_id}")
        config = {
          "context_length": ctx_len,
          "batch_size":521,
          "seed":79,
          "top_p":top_p,
          "temperature":temperature
        }
        return CTransformers(model=model_id, model_type='llama', seed=79, config=config)        

      except Exception as ex:
        print(f"Load Error {str(ex)}")
        return None
  else:
    print(f"Trying AirLLM to load model_id:{model_id}")
    return AirLLM(llama2_model_id=model_id, max_len=ctx_len, compression=("4bit" if load_4bit else "8bit" if load_8bit else ""))    

# Class to store pages and run queries
class StorageRetrievalLLM:

  def __init__(self, stored_pages_folder : str, llm, embeddings):
    
    # Initialize storage
    os.makedirs(stored_pages_folder, exist_ok=True)
    self.stored_pages_folder = stored_pages_folder
    self.llm = llm
    self.embeddings = embeddings
    
    # Try loading existing, else create new
    try:
      print(f"Loading StorageRetrievalLLM from disk")
      self.vectorstore = FAISS.load_local(folder_path=stored_pages_folder, embeddings=embeddings)
      self.chain = self.create_chain()
    except:
      print(f"Initializing a new instance of StorageRetrievalLLM")
            
      print(f"Loading PDF")
      self.vectorstore = None
      self.chain = None
      
      # Load pages 
      loader = DirectoryLoader(stored_pages_folder, glob="**/*.pdf", loader_cls=PyMuPDFLoader)
      documents = loader.load()

      # Split into chunks
      text_splitter = RecursiveCharacterTextSplitter(chunk_size=EMBD_CHUNK_SIZE, chunk_overlap=100)
      documents = text_splitter.split_documents(documents)

      if len(documents) > 0:
        # Create index
        print(f"Creating FAISS index FROM {len(documents)} documents")            
        self.vectorstore = FAISS.from_documents(documents, embeddings)    
        self.vectorstore.save_local(folder_path=stored_pages_folder)    
      else:
        print(f"Initializing with empty FAISS index")
        self.vectorstore = FAISS.from_texts(["Knowledge Base: Use the learning tools (learnOnline, wikipedia, etc...) to increase tour knownledge."], embeddings)      
            
      if llm:
        # Create chain
        self.chain = self.create_chain()
                      
  # Helper to create retrieval chain            
  def create_chain(self, vectorstore = None, llm = None, embeddings = None):
    if vectorstore is None:
      vectorstore = self.vectorstore
    if llm is None:
      llm = self.llm            
    if embeddings is None:
      embeddings = self.embeddings            

    print(f"Creating Retriever llm chain")
    retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
    chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, return_source_documents=False)
    return chain

  # Add URL
  def addUrlToMemory(self, url : str, summarize = True):
    
    loader = RecursiveUrlLoader(url=url, max_depth=2, extractor=lambda x: BeautifulSoup(x, "html.parser").text)
    docs = loader.load()
    
    # Split 
    splitter = RecursiveCharacterTextSplitter()
    documents = splitter.split_documents(docs)
    
    # Add
    self.vectorstore.add_documents(documents)
    
    # Update chain
    self.chain = self.create_chain()
    
    # Summarize
    if summarize:
      return self.query(query=f"return a short summary about the website {url}, try to not exceed 3500 tokens")
    else:
      return f"URL {url} Parsed and collected into memory vectorstore..."
        
  # Add document
  def addDocumentToMemory(self, doc : str, summarize = True):
    
    # Load file
    file_path = doc if os.path.exists(doc) else os.path.join("data", doc)  
    self.stored_pages_folder
    # loader = DirectoryLoader(file_path, glob="**/*.pdf", loader_cls=PyMuPDFLoader)       
    # documents = loader.load()    
    loader = PyPDFLoader(file_path)
    documents = loader.load_and_split()
    self.vectorstore.add_documents(documents)
    
    # Update chain
    self.chain = self.create_chain()
    
    # Summarize
    if summarize:
      return self.query(query=f"return a short summary about the doc {file_path}, try to not exceed 3500 tokens")
    else:
      return f"File {file_path} Parsed and collected into memory vectorstore..."
                        
  # Add text file
  def addTextFileToMemory(self, file_path : str, summarize = True):
    
    # Load file
    loader = PyPDFLoader(file_path)
    documents = loader.load_and_split()
    self.vectorstore.add_documents(documents)
    
    # Update chain
    self.chain = self.create_chain()

    # Summarize
    if summarize:
      return self.query(query=f"return a short summary about the file {file_path}, try to not exceed 3500 tokens")
    else:
      return f"File {file_path} Parsed and collected into memory vectorstore..."
      
  # Add text            
  def addTextToMemory(self, text : str, summarize = True):
    
    # Add text
    self.vectorstore.add_texts([text])
    
    # Update chain
    self.chain = self.create_chain()                             

    # Summarize
    if summarize:
      return self.query(query=f"return a short summary about the text {text[:10]}, try to not exceed 3500 tokens")
    else:
      return "Text Parsed and collected into memory vectorstore..."      

  # Run query
  def query(self, query: str, chat_history = []):
    res = self.chain({"question" : query, "chat_history" : chat_history})           
    return res['answer']

# Class for agent  
class RBotAgent:        

  def __init__(self, llm, tools, max_iterations=3, observations_callback=None):
    self.llm = llm
    self.tools = tools
    self.max_iterations=max_iterations
    self.observations_callback = observations_callback

  # Get tools prompt
  def tools_prompt(self):
    return "\n".join([ f"{tool.name}(query_params)" for tool in self.tools])

  # Main handler  
  def __call__(self, params):
    
    input = params["input"]
    chat_history = params["chat_history"]
    formatted_history = get_buffer_string(chat_history, human_prefix="USER")
    
    prompt = f"""
### EXAMPLE 1:
USER: Find me a recipe for chocolate chip cookies. 
AI: SearchAndReply("chocolate chip cookies recipe", 5)

### EXAMPLE 2:
USER: Show me pictures of cute puppies.
AI: ImageGenerator("cute puppies", 512, 512)

### EXAMPLE 3:
USER: Explain the concept of blockchain.
AI: KnowledgeBaseQuery("Explain blockchain")

### EXAMPLE 4:  
USER: Find me recent news about cryptocurrency.
AI: SearchAndReply("recent cryptocurrency news")

### EXAMPLE 5:
USER: Can you calculate the factorial of 5?
AI: Calculator("factorial(5)")

### REAL CONVERSATION:
[INST]
SYSTEM: You are {AI_NAME} a smart and helpful AI assistant with access to external tools and knowledge.
Today is {str(datetime.now().date())}, please reply last user message directly or invoking a valid action from the following list:
{self.tools_prompt()}
[/INST]
{formatted_history}
USER: {input}
AI:
"""
    observations = []

    # Try calling tools
    tool_names = [tool.name.lower() for tool in self.tools]
    for i in range(self.max_iterations):
      
      print(f"iteration {i+1} - sending prompt:\n" + prompt)
      for i in [1,2,3]:
        output = str(self.llm(prompt,stop=["USER:","AI:","SYS:","[INST]","[/INST]"])).strip()
        if output: break
      
      
      return_role = output.split(":")[0]
      return_message = output[len(return_role)+1:].split("[INST]")[0].split("[/INST]")[0].split("User")[0].split("USER")[0].strip()
      
      # Try to parse action request
      action_name = None
      action_input = None
      matches = re.findall(r"(\w+)\((.+?)\)", return_message)
      for match in matches:
        if len(match) > 1 and match[0] and match[1]:
          if match[0].strip().lower() in tool_names:
            action_name = match[0].strip().lower()
            action_input = match[1].strip().replace("query_params", "").strip().replace("()","")
            if (action_name and action_input): break

      # Try unformatted            
      if not action_name or not action_input:   
        lines = output.split("\n")
        for line in lines:
          for tool in tool_names:
            if f"{tool}:" in line.lower() or f"{tool}(" in line.lower():
              action_name = tool
              action_input = line[line.lower().find(tool)+len(tool):].strip().replace("query_params", "").strip().replace("()","")
              if (len(action_input) < 2): 
                action_input = None
              else:
                print(f"Matched unformatted action request. {action_name}:{action_input} from line: {line}")
              if (action_name and action_input): break
            elif action_name and not action_input:
              action_input = line[line.find(":") + 1:].replace("\"","")
              if (len(action_input) < 2): 
                action_input = None
              else:
                print(f"Matched unformatted action request. {action_name}:{action_input} from line: {line}")              
              if (action_name and action_input): break

      
      # Call tool if found
      if action_name and action_input:                
        for tool in self.tools:
          if tool.name.lower() in action_name:

            params_list  = action_input.split(",")
            try:
              print(f"Fixing input for tool {tool.name}, Original params list: {str(params_list)}")
              params_list = validate_and_fix_params(tool.name, params_list)
              print(f"Fixed params list: {str(params_list)}")
              print(f"Calling action:{tool.name} with input:{str(params_list)}")
              observations.append(f"Calling action:{tool.name} with input:{str(params_list)}")
              res = tool.func(*params_list)
            except Exception as ex:
              res = f"{action_name} execution error: {str(ex)}"
            
            print(f"Action Output: {res}")
            observations.append(f"Action Output: {res}")
            prompt = prompt + f"Action: {tool.name}({action_input})\SYSTEM:{res}"    
            if (i+1 == self.max_iterations):
                print(f"MAX ITERATIONS REACHED. PLEASE PROVIDE A FINAL RESPONSE!")
                prompt = prompt + "\nMAX ITERATIONS REACHED. PLEASE PROVIDE A FINAL RESPONSE!\nAI:"
                output = str(self.llm(prompt,stop=["USER:","AI:","SYS:","SYSTEM:","[INST]","[/INST]"])).strip()
                final_response = "\n*Reasoning: ".join(observations) + f"\n{output}" if len(observations) > 0 else f"\n{output}"
                return { "output": final_response }
            else:
                prompt = prompt + "\nAI:"
      else:
        final_response = "\n*Reasoning: ".join(observations) + f"\n{output}" if len(observations) > 0 else f"\n{output}"
        print(f"Final Anser: {final_response}")
        return { "output": final_response }

    return { "output": "Max Iterations reached. Last Output:\n" + output}

# Main agent class
class SmartAgent:   

  def __init__(self, model_id: str, conversation_model = "", emb_model="all-MiniLM-L6-v2", load_in_4bit=False, load_in_8bit=True, ctx_len=16384, temp=0.1, top_p=0.95, max_iterations=3, observations_callback = None):
  
    self.chat_history = []
    self.max_iterations = max_iterations
    self.model = model_id        
    self.current_message = ""

    # Load LM
    self.llm = create_llm(model_id, load_4bit=load_in_4bit, load_8bit=load_in_8bit, ctx_len=ctx_len, temperature=temp, top_p=top_p)        

    # Load embeddings
    self.embeddings = SentenceTransformerEmbeddings(model_name=emb_model)
    
    # Initialize memory
    self.memory_chain = StorageRetrievalLLM(stored_pages_folder="./knowledge_base", llm=self.llm, embeddings=self.embeddings)
    
    #TOOL REQUEST
    self.requests_tool = TextRequestsWrapper()
    
    #Wikipedia
    self.wikipedia_tool = WikipediaAPIWrapper()

    self.image2image_gen_pipe = None
    self.text2image_gen_pipe = None

    # Create agent
    self.smartAgent = self.create_smart_agent()

    print(f"Smart Agent Initialized - CUDA Support:{torch.cuda.is_available()}")

  def reset_context(self):
      self.chat_history.clear()
      
    # Create image 
  def createImage(self, prompt : str, width : int=512, height : int=512, denoise_strength : float=0.75, guidance_scale: float=7.5, model_id : str= 'dreamshaper_8.safetensors'):
    try:
        init_image = None
        if (os.path.exists("./image_gen_guide.jpg")):
            init_image = Image.open("./image_gen_guide.jpg")               

        images = []         
        if init_image is None:
            if self.text2image_gen_pipe is None:
                if torch.cuda.is_available():
                    print(f"Loading Stable model {model_id} into GPU")
                    self.text2image_gen_pipe = StableDiffusionPipeline.from_single_file(f"{MODELS_DIR}/" + model_id, torch_dtype=torch.float16, verbose=True, use_safetensors=True)
                    self.text2image_gen_pipe = self.text2image_gen_pipe.to("cuda")   
                else:
                    print(f"Loading Stable model {model_id} into CPU")
                    self.text2image_gen_pipe = StableDiffusionPipeline.from_single_file(f"{MODELS_DIR}/" + model_id, torch_dtype=torch.float32, verbose=True, use_safetensors=True)
                    self.text2image_gen_pipe = self.text2image_gen_pipe.to("cpu")                   
            print("generating image from promt...")
            images = self.text2image_gen_pipe(prompt, width=width, height=height).images
        else:
            if self.image2image_gen_pipe is None:
                if torch.cuda.is_available():
                    print(f"Loading Stable model {model_id} into GPU")
                    self.image2image_gen_pipe = StableDiffusionImg2ImgPipeline.from_single_file(f"{MODELS_DIR}/" + model_id, torch_dtype=torch.float16, verbose=True, use_safetensors=True)
                    self.image2image_gen_pipe = self.image2image_gen_pipe.to("cuda")   
                else:
                    print(f"Loading Stable model {model_id} into CPU")
                    self.image2image_gen_pipe = StableDiffusionImg2ImgPipeline.from_single_file(f"{MODELS_DIR}/" + model_id, torch_dtype=torch.float32, verbose=True, use_safetensors=True)
                    self.image2image_gen_pipe = self.image2image_gen_pipe.to("cpu")                   
            print("generating image from promt+image...")
            init_image = init_image.convert("RGB")
            images = self.image2image_gen_pipe(prompt, image=init_image, width=width, height=height, strength=denoise_strength, guidance_scale=guidance_scale).images
        
        paths = []
        for image in (images if images is not None else []):
            # Create a filename based on the current date and time
            filename = f'image_{datetime.now().strftime("%Y%m%d%H%M%S")}{(len(paths)+1)}.jpg'
            # Save the image to the specified path
            file_path = f"./generated_images/{filename}"
            image.save(file_path)
            paths.append(file_path)
        return f"Generated images from prompt \"{prompt}\" saved to files: {', '.join(paths)}"        
    except Exception as e:
        print(f"error in createImage: {e}")            
        return "Unable to generate file"
    
  def load_and_split_documents(self, url, max_depth=2):
      loader = RecursiveUrlLoader(url, max_depth=max_depth, extractor=lambda x: BeautifulSoup(x, "html.parser").text)
      docs = loader.load()
      splitter = RecursiveCharacterTextSplitter()
      return splitter.split_documents(docs)
      
  def search_and_reply(self, query, max_results=5):
      vectorstore = None        
      sources = ""
      res_cnt = 0
      results = google_free_search.gsearch(query=query)
      #urls = [ur['link'].strip() for ur in results]
      urls = []
      for result in results:
          link = result['link']
          title = result['title']
          if (link.startswith("http://") or link.startswith("https://")):
              res_cnt = res_cnt +1
              if res_cnt > max_results: break
              print(f"- Found Valid Link {title} : {link}")
              sources += f"{title}, "
              urls.append(link)
          else:
              print(f"ERROR! Invalid link: {link} for result: {title}")

      if len(urls) > 0:
          import concurrent.futures            
          print(f"Loading {len(urls)} urls into a vectore store")
          
          with concurrent.futures.ThreadPoolExecutor() as executor:
              future_results = [executor.submit(self.load_and_split_documents, url) for url in urls]
          
          documents = []
          for future in concurrent.futures.as_completed(future_results):
              documents.extend(future.result())
              
          if len(documents) > 0:
              vectorstore = FAISS.from_documents(documents, self.embeddings) 

      if vectorstore is not None:
          retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
          chain = RetrievalQA.from_chain_type(llm=self.llm, chain_type="stuff", retriever=retriever)   
          response = chain.run(self.current_message + " " + datetime.now().strftime("%Y/%m/%d"))
          ret_message = response #['answer']
          return ret_message
      else:
          return f"Unable to acquire results from web search results:{len(results)} - valids:{res_cnt}"            
          
  # Main handler
  def agent_generate_response(self, user_message):
  
    start_time = time.time()

    self.current_message = user_message
    # Get response
    message_response = self.smartAgent({"input" : user_message, "chat_history" : self.chat_history})             

    end_time = time.time()
    elapsed_time = end_time - start_time
            
    # Format response
    response = message_response['output'] + f" ({round(elapsed_time,2)}s)"
    self.chat_history.append(HumanMessage(content=user_message))
    self.chat_history.append(AIMessage(content=message_response['output']))
    
    return response

  # Create agent
  def create_smart_agent(self):
  
    # Tools
    tools = [
        Tool(name="SearchAndReply", func=self.search_and_reply, description="Search web and reply"),
        Tool(name="Wikipedia", func=self.wikipedia_tool.run, description="Query Wikipedia"),   
        Tool(name="ImageGenerator", func=self.createImage, description="Generate images"),
        Tool(name="KnowledgeBaseQuery", func=self.memory_chain.query, description="Query knowledge base"),
    ]    
    tools.extend(load_tools(["llm-math"], llm=self.llm))  

    # test_reply = self.llm(f"Hello {AI_NAME}")
    # print(f"Test reply to Hello: {test_reply}")

    return RBotAgent(llm=self.llm, tools=tools, max_iterations=self.max_iterations)