martin
initial
67c46fd
raw
history blame
9.35 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import numpy as np
import torch.nn as nn
from enum import Enum, auto
import torch.nn.functional as F
from dataclasses import dataclass
from funasr_detach.models.emotion2vec.fairseq_modules import (
LayerNorm,
SamePad,
TransposeLast,
)
class Modality(Enum):
AUDIO = auto()
@dataclass
class D2vDecoderConfig:
decoder_dim: int = 384
decoder_groups: int = 16
decoder_kernel: int = 5
decoder_layers: int = 5
input_dropout: float = 0.1
add_positions_masked: bool = False
add_positions_all: bool = False
decoder_residual: bool = True
projection_layers: int = 1
projection_ratio: float = 2.0
class FixedPositionalEncoder(nn.Module):
def __init__(self, pos_embed):
super().__init__()
self.positions = pos_embed
def forward(self, x, padding_mask):
return self.positions
class TextFeatPositionalEncoder(nn.Module):
"""
Original encoder expects (B, T) long input. This module wraps it to take
local_encoder output which are (B, T, D) float tensors
"""
def __init__(self, pos_encoder):
super().__init__()
self.pos_encoder = pos_encoder
def forward(self, x, padding_mask):
# assume padded token embeddings are 0s
# TODO: consider using padding_mask as input
return self.pos_encoder(x[..., 0])
class BlockEncoder(nn.Module):
def __init__(self, blocks, norm_layer, layer_norm_first, layerdrop, dropout):
super().__init__()
self.blocks = blocks
self.norm = norm_layer
self.layer_norm_first = layer_norm_first
self.layerdrop = layerdrop
self.dropout = nn.Dropout(dropout, inplace=True)
def forward(self, x, padding_mask, alibi_bias, alibi_scale):
if self.norm is not None and not self.layer_norm_first:
x = self.norm(x)
x = self.dropout(x)
for i, blk in enumerate(self.blocks):
if (
not self.training
or self.layerdrop == 0
or (np.random.random() > self.layerdrop)
):
ab = alibi_bias
if ab is not None and alibi_scale is not None:
scale = (
alibi_scale[i]
if alibi_scale.size(0) > 1
else alibi_scale.squeeze(0)
)
ab = ab * scale.type_as(ab)
x, _ = blk(x, padding_mask, ab)
if self.norm is not None and self.layer_norm_first:
x = self.norm(x)
return x
class DecoderBase(nn.Module):
decoder_cfg: D2vDecoderConfig
def __init__(self, cfg: D2vDecoderConfig):
super().__init__()
self.decoder_cfg = cfg
def reset_parameters(self):
for mod in self.proj.modules():
if isinstance(mod, nn.Linear):
mod.reset_parameters()
def add_residual(self, x, residual, i, mask_info):
if (
residual is None
or not self.decoder_cfg.decoder_residual
or residual.size(1) != x.size(1)
):
return x
ret = x + residual
return ret
class Decoder1d(DecoderBase):
def __init__(self, cfg: D2vDecoderConfig, input_dim):
super().__init__(cfg)
def make_block(in_dim):
block = [
nn.Conv1d(
in_dim,
cfg.decoder_dim,
kernel_size=cfg.decoder_kernel,
padding=cfg.decoder_kernel // 2,
groups=cfg.decoder_groups,
),
SamePad(cfg.decoder_kernel),
TransposeLast(),
LayerNorm(cfg.decoder_dim, elementwise_affine=False),
TransposeLast(),
nn.GELU(),
]
return nn.Sequential(*block)
self.blocks = nn.Sequential(
*[
make_block(input_dim if i == 0 else cfg.decoder_dim)
for i in range(cfg.decoder_layers)
]
)
projs = []
curr_dim = cfg.decoder_dim
for i in range(cfg.projection_layers - 1):
next_dim = int(curr_dim * cfg.projection_ratio) if i == 0 else curr_dim
projs.append(nn.Linear(curr_dim, next_dim))
projs.append(nn.GELU())
curr_dim = next_dim
projs.append(nn.Linear(curr_dim, input_dim))
if len(projs) == 1:
self.proj = projs[0]
else:
self.proj = nn.Sequential(*projs)
def forward(self, x, mask_info):
x = x.transpose(1, 2)
residual = x
for i, layer in enumerate(self.blocks):
x = layer(x)
x = self.add_residual(x, residual, i, mask_info)
residual = x
x = x.transpose(1, 2)
x = self.proj(x)
return x
class AltBlock(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
mlp_drop=0.0,
post_mlp_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
layer_norm_first=True,
ffn_targets=False,
cosine_attention=False,
):
super().__init__()
self.layer_norm_first = layer_norm_first
self.ffn_targets = ffn_targets
from funasr_detach.models.emotion2vec.timm_modules import DropPath, Mlp
self.norm1 = norm_layer(dim)
self.attn = AltAttention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
cosine_attention=cosine_attention,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=mlp_drop,
)
self.post_mlp_dropout = nn.Dropout(post_mlp_drop, inplace=False)
def forward(self, x, padding_mask=None, alibi_bias=None):
if self.layer_norm_first:
x = x + self.drop_path(self.attn(self.norm1(x), padding_mask, alibi_bias))
r = x = self.mlp(self.norm2(x))
t = x
x = r + self.drop_path(self.post_mlp_dropout(x))
if not self.ffn_targets:
t = x
else:
x = x + self.drop_path(self.attn(x, padding_mask, alibi_bias))
r = x = self.norm1(x)
x = self.mlp(x)
t = x
x = self.norm2(r + self.drop_path(self.post_mlp_dropout(x)))
if not self.ffn_targets:
t = x
return x, t
class AltAttention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
cosine_attention=False,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.cosine_attention = cosine_attention
if cosine_attention:
self.logit_scale = nn.Parameter(
torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True
)
def forward(self, x, padding_mask=None, alibi_bias=None):
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4) # qkv x B x H x L x D
)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
dtype = q.dtype
if self.cosine_attention:
# cosine attention
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)
logit_scale = torch.clamp(
self.logit_scale, max=torch.log(torch.tensor(1.0 / 0.01))
).exp()
attn = attn * logit_scale
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if alibi_bias is not None:
attn = attn.type_as(alibi_bias)
attn[:, : alibi_bias.size(1)] += alibi_bias
if padding_mask is not None and padding_mask.any():
attn = attn.masked_fill(
padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
float("-inf"),
)
attn = attn.softmax(dim=-1, dtype=torch.float32).to(dtype=dtype)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2) #
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x