Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import numpy as np | |
import torch.nn as nn | |
from enum import Enum, auto | |
import torch.nn.functional as F | |
from dataclasses import dataclass | |
from funasr_detach.models.emotion2vec.fairseq_modules import ( | |
LayerNorm, | |
SamePad, | |
TransposeLast, | |
) | |
class Modality(Enum): | |
AUDIO = auto() | |
class D2vDecoderConfig: | |
decoder_dim: int = 384 | |
decoder_groups: int = 16 | |
decoder_kernel: int = 5 | |
decoder_layers: int = 5 | |
input_dropout: float = 0.1 | |
add_positions_masked: bool = False | |
add_positions_all: bool = False | |
decoder_residual: bool = True | |
projection_layers: int = 1 | |
projection_ratio: float = 2.0 | |
class FixedPositionalEncoder(nn.Module): | |
def __init__(self, pos_embed): | |
super().__init__() | |
self.positions = pos_embed | |
def forward(self, x, padding_mask): | |
return self.positions | |
class TextFeatPositionalEncoder(nn.Module): | |
""" | |
Original encoder expects (B, T) long input. This module wraps it to take | |
local_encoder output which are (B, T, D) float tensors | |
""" | |
def __init__(self, pos_encoder): | |
super().__init__() | |
self.pos_encoder = pos_encoder | |
def forward(self, x, padding_mask): | |
# assume padded token embeddings are 0s | |
# TODO: consider using padding_mask as input | |
return self.pos_encoder(x[..., 0]) | |
class BlockEncoder(nn.Module): | |
def __init__(self, blocks, norm_layer, layer_norm_first, layerdrop, dropout): | |
super().__init__() | |
self.blocks = blocks | |
self.norm = norm_layer | |
self.layer_norm_first = layer_norm_first | |
self.layerdrop = layerdrop | |
self.dropout = nn.Dropout(dropout, inplace=True) | |
def forward(self, x, padding_mask, alibi_bias, alibi_scale): | |
if self.norm is not None and not self.layer_norm_first: | |
x = self.norm(x) | |
x = self.dropout(x) | |
for i, blk in enumerate(self.blocks): | |
if ( | |
not self.training | |
or self.layerdrop == 0 | |
or (np.random.random() > self.layerdrop) | |
): | |
ab = alibi_bias | |
if ab is not None and alibi_scale is not None: | |
scale = ( | |
alibi_scale[i] | |
if alibi_scale.size(0) > 1 | |
else alibi_scale.squeeze(0) | |
) | |
ab = ab * scale.type_as(ab) | |
x, _ = blk(x, padding_mask, ab) | |
if self.norm is not None and self.layer_norm_first: | |
x = self.norm(x) | |
return x | |
class DecoderBase(nn.Module): | |
decoder_cfg: D2vDecoderConfig | |
def __init__(self, cfg: D2vDecoderConfig): | |
super().__init__() | |
self.decoder_cfg = cfg | |
def reset_parameters(self): | |
for mod in self.proj.modules(): | |
if isinstance(mod, nn.Linear): | |
mod.reset_parameters() | |
def add_residual(self, x, residual, i, mask_info): | |
if ( | |
residual is None | |
or not self.decoder_cfg.decoder_residual | |
or residual.size(1) != x.size(1) | |
): | |
return x | |
ret = x + residual | |
return ret | |
class Decoder1d(DecoderBase): | |
def __init__(self, cfg: D2vDecoderConfig, input_dim): | |
super().__init__(cfg) | |
def make_block(in_dim): | |
block = [ | |
nn.Conv1d( | |
in_dim, | |
cfg.decoder_dim, | |
kernel_size=cfg.decoder_kernel, | |
padding=cfg.decoder_kernel // 2, | |
groups=cfg.decoder_groups, | |
), | |
SamePad(cfg.decoder_kernel), | |
TransposeLast(), | |
LayerNorm(cfg.decoder_dim, elementwise_affine=False), | |
TransposeLast(), | |
nn.GELU(), | |
] | |
return nn.Sequential(*block) | |
self.blocks = nn.Sequential( | |
*[ | |
make_block(input_dim if i == 0 else cfg.decoder_dim) | |
for i in range(cfg.decoder_layers) | |
] | |
) | |
projs = [] | |
curr_dim = cfg.decoder_dim | |
for i in range(cfg.projection_layers - 1): | |
next_dim = int(curr_dim * cfg.projection_ratio) if i == 0 else curr_dim | |
projs.append(nn.Linear(curr_dim, next_dim)) | |
projs.append(nn.GELU()) | |
curr_dim = next_dim | |
projs.append(nn.Linear(curr_dim, input_dim)) | |
if len(projs) == 1: | |
self.proj = projs[0] | |
else: | |
self.proj = nn.Sequential(*projs) | |
def forward(self, x, mask_info): | |
x = x.transpose(1, 2) | |
residual = x | |
for i, layer in enumerate(self.blocks): | |
x = layer(x) | |
x = self.add_residual(x, residual, i, mask_info) | |
residual = x | |
x = x.transpose(1, 2) | |
x = self.proj(x) | |
return x | |
class AltBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads, | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
mlp_drop=0.0, | |
post_mlp_drop=0.0, | |
drop_path=0.0, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
layer_norm_first=True, | |
ffn_targets=False, | |
cosine_attention=False, | |
): | |
super().__init__() | |
self.layer_norm_first = layer_norm_first | |
self.ffn_targets = ffn_targets | |
from funasr_detach.models.emotion2vec.timm_modules import DropPath, Mlp | |
self.norm1 = norm_layer(dim) | |
self.attn = AltAttention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
cosine_attention=cosine_attention, | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=mlp_drop, | |
) | |
self.post_mlp_dropout = nn.Dropout(post_mlp_drop, inplace=False) | |
def forward(self, x, padding_mask=None, alibi_bias=None): | |
if self.layer_norm_first: | |
x = x + self.drop_path(self.attn(self.norm1(x), padding_mask, alibi_bias)) | |
r = x = self.mlp(self.norm2(x)) | |
t = x | |
x = r + self.drop_path(self.post_mlp_dropout(x)) | |
if not self.ffn_targets: | |
t = x | |
else: | |
x = x + self.drop_path(self.attn(x, padding_mask, alibi_bias)) | |
r = x = self.norm1(x) | |
x = self.mlp(x) | |
t = x | |
x = self.norm2(r + self.drop_path(self.post_mlp_dropout(x))) | |
if not self.ffn_targets: | |
t = x | |
return x, t | |
class AltAttention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
qkv_bias=False, | |
qk_scale=None, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
cosine_attention=False, | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.cosine_attention = cosine_attention | |
if cosine_attention: | |
self.logit_scale = nn.Parameter( | |
torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True | |
) | |
def forward(self, x, padding_mask=None, alibi_bias=None): | |
B, N, C = x.shape | |
qkv = ( | |
self.qkv(x) | |
.reshape(B, N, 3, self.num_heads, C // self.num_heads) | |
.permute(2, 0, 3, 1, 4) # qkv x B x H x L x D | |
) | |
q, k, v = ( | |
qkv[0], | |
qkv[1], | |
qkv[2], | |
) # make torchscript happy (cannot use tensor as tuple) | |
dtype = q.dtype | |
if self.cosine_attention: | |
# cosine attention | |
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) | |
logit_scale = torch.clamp( | |
self.logit_scale, max=torch.log(torch.tensor(1.0 / 0.01)) | |
).exp() | |
attn = attn * logit_scale | |
else: | |
q = q * self.scale | |
attn = q @ k.transpose(-2, -1) | |
if alibi_bias is not None: | |
attn = attn.type_as(alibi_bias) | |
attn[:, : alibi_bias.size(1)] += alibi_bias | |
if padding_mask is not None and padding_mask.any(): | |
attn = attn.masked_fill( | |
padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), | |
float("-inf"), | |
) | |
attn = attn.softmax(dim=-1, dtype=torch.float32).to(dtype=dtype) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2) # | |
x = x.reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |