Spaces:
Running
Running
# Copyright 2019 Shigeki Karita | |
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
"""Transformer encoder definition.""" | |
from typing import List | |
from typing import Optional | |
from typing import Tuple | |
import torch | |
from torch import nn | |
import logging | |
from funasr_detach.models.transformer.attention import MultiHeadedAttention | |
from funasr_detach.models.transformer.embedding import PositionalEncoding | |
from funasr_detach.models.transformer.layer_norm import LayerNorm | |
from funasr_detach.models.transformer.utils.multi_layer_conv import Conv1dLinear | |
from funasr_detach.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask | |
from funasr_detach.models.transformer.positionwise_feed_forward import ( | |
PositionwiseFeedForward, # noqa: H301 | |
) | |
from funasr_detach.models.transformer.utils.repeat import repeat | |
from funasr_detach.models.transformer.utils.dynamic_conv import DynamicConvolution | |
from funasr_detach.models.transformer.utils.dynamic_conv2d import DynamicConvolution2D | |
from funasr_detach.models.transformer.utils.lightconv import LightweightConvolution | |
from funasr_detach.models.transformer.utils.lightconv2d import LightweightConvolution2D | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling2 | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling6 | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling8 | |
from funasr_detach.models.transformer.utils.subsampling import TooShortUttError | |
from funasr_detach.models.transformer.utils.subsampling import check_short_utt | |
class EncoderLayer(nn.Module): | |
"""Encoder layer module. | |
Args: | |
size (int): Input dimension. | |
self_attn (torch.nn.Module): Self-attention module instance. | |
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance | |
can be used as the argument. | |
feed_forward (torch.nn.Module): Feed-forward module instance. | |
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance | |
can be used as the argument. | |
dropout_rate (float): Dropout rate. | |
normalize_before (bool): Whether to use layer_norm before the first block. | |
concat_after (bool): Whether to concat attention layer's input and output. | |
if True, additional linear will be applied. | |
i.e. x -> x + linear(concat(x, att(x))) | |
if False, no additional linear will be applied. i.e. x -> x + att(x) | |
stochastic_depth_rate (float): Proability to skip this layer. | |
During training, the layer may skip residual computation and return input | |
as-is with given probability. | |
""" | |
def __init__( | |
self, | |
size, | |
self_attn, | |
feed_forward, | |
dropout_rate, | |
normalize_before=True, | |
concat_after=False, | |
stochastic_depth_rate=0.0, | |
): | |
"""Construct an EncoderLayer object.""" | |
super(EncoderLayer, self).__init__() | |
self.self_attn = self_attn | |
self.feed_forward = feed_forward | |
self.norm1 = LayerNorm(size) | |
self.norm2 = LayerNorm(size) | |
self.dropout = nn.Dropout(dropout_rate) | |
self.size = size | |
self.normalize_before = normalize_before | |
self.concat_after = concat_after | |
if self.concat_after: | |
self.concat_linear = nn.Linear(size + size, size) | |
self.stochastic_depth_rate = stochastic_depth_rate | |
def forward(self, x, mask, cache=None): | |
"""Compute encoded features. | |
Args: | |
x_input (torch.Tensor): Input tensor (#batch, time, size). | |
mask (torch.Tensor): Mask tensor for the input (#batch, time). | |
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). | |
Returns: | |
torch.Tensor: Output tensor (#batch, time, size). | |
torch.Tensor: Mask tensor (#batch, time). | |
""" | |
skip_layer = False | |
# with stochastic depth, residual connection `x + f(x)` becomes | |
# `x <- x + 1 / (1 - p) * f(x)` at training time. | |
stoch_layer_coeff = 1.0 | |
if self.training and self.stochastic_depth_rate > 0: | |
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate | |
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate) | |
if skip_layer: | |
if cache is not None: | |
x = torch.cat([cache, x], dim=1) | |
return x, mask | |
residual = x | |
if self.normalize_before: | |
x = self.norm1(x) | |
if cache is None: | |
x_q = x | |
else: | |
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size) | |
x_q = x[:, -1:, :] | |
residual = residual[:, -1:, :] | |
mask = None if mask is None else mask[:, -1:, :] | |
if self.concat_after: | |
x_concat = torch.cat((x, self.self_attn(x_q, x, x, mask)), dim=-1) | |
x = residual + stoch_layer_coeff * self.concat_linear(x_concat) | |
else: | |
x = residual + stoch_layer_coeff * self.dropout( | |
self.self_attn(x_q, x, x, mask) | |
) | |
if not self.normalize_before: | |
x = self.norm1(x) | |
residual = x | |
if self.normalize_before: | |
x = self.norm2(x) | |
x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x)) | |
if not self.normalize_before: | |
x = self.norm2(x) | |
if cache is not None: | |
x = torch.cat([cache, x], dim=1) | |
return x, mask | |
class TransformerEncoder_lm(nn.Module): | |
"""Transformer encoder module. | |
Args: | |
idim (int): Input dimension. | |
attention_dim (int): Dimension of attention. | |
attention_heads (int): The number of heads of multi head attention. | |
conv_wshare (int): The number of kernel of convolution. Only used in | |
selfattention_layer_type == "lightconv*" or "dynamiconv*". | |
conv_kernel_length (Union[int, str]): Kernel size str of convolution | |
(e.g. 71_71_71_71_71_71). Only used in selfattention_layer_type | |
== "lightconv*" or "dynamiconv*". | |
conv_usebias (bool): Whether to use bias in convolution. Only used in | |
selfattention_layer_type == "lightconv*" or "dynamiconv*". | |
linear_units (int): The number of units of position-wise feed forward. | |
num_blocks (int): The number of decoder blocks. | |
dropout_rate (float): Dropout rate. | |
positional_dropout_rate (float): Dropout rate after adding positional encoding. | |
attention_dropout_rate (float): Dropout rate in attention. | |
input_layer (Union[str, torch.nn.Module]): Input layer type. | |
pos_enc_class (torch.nn.Module): Positional encoding module class. | |
`PositionalEncoding `or `ScaledPositionalEncoding` | |
normalize_before (bool): Whether to use layer_norm before the first block. | |
concat_after (bool): Whether to concat attention layer's input and output. | |
if True, additional linear will be applied. | |
i.e. x -> x + linear(concat(x, att(x))) | |
if False, no additional linear will be applied. i.e. x -> x + att(x) | |
positionwise_layer_type (str): "linear", "conv1d", or "conv1d-linear". | |
positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer. | |
selfattention_layer_type (str): Encoder attention layer type. | |
padding_idx (int): Padding idx for input_layer=embed. | |
stochastic_depth_rate (float): Maximum probability to skip the encoder layer. | |
intermediate_layers (Union[List[int], None]): indices of intermediate CTC layer. | |
indices start from 1. | |
if not None, intermediate outputs are returned (which changes return type | |
signature.) | |
""" | |
def __init__( | |
self, | |
idim, | |
attention_dim=256, | |
attention_heads=4, | |
conv_wshare=4, | |
conv_kernel_length="11", | |
conv_usebias=False, | |
linear_units=2048, | |
num_blocks=6, | |
dropout_rate=0.1, | |
positional_dropout_rate=0.1, | |
attention_dropout_rate=0.0, | |
input_layer="conv2d", | |
pos_enc_class=PositionalEncoding, | |
normalize_before=True, | |
concat_after=False, | |
positionwise_layer_type="linear", | |
positionwise_conv_kernel_size=1, | |
selfattention_layer_type="selfattn", | |
padding_idx=-1, | |
stochastic_depth_rate=0.0, | |
intermediate_layers=None, | |
ctc_softmax=None, | |
conditioning_layer_dim=None, | |
): | |
"""Construct an Encoder object.""" | |
super().__init__() | |
self.conv_subsampling_factor = 1 | |
if input_layer == "linear": | |
self.embed = torch.nn.Sequential( | |
torch.nn.Linear(idim, attention_dim), | |
torch.nn.LayerNorm(attention_dim), | |
torch.nn.Dropout(dropout_rate), | |
torch.nn.ReLU(), | |
pos_enc_class(attention_dim, positional_dropout_rate), | |
) | |
elif input_layer == "conv2d": | |
self.embed = Conv2dSubsampling(idim, attention_dim, dropout_rate) | |
self.conv_subsampling_factor = 4 | |
elif input_layer == "conv2d-scaled-pos-enc": | |
self.embed = Conv2dSubsampling( | |
idim, | |
attention_dim, | |
dropout_rate, | |
pos_enc_class(attention_dim, positional_dropout_rate), | |
) | |
self.conv_subsampling_factor = 4 | |
elif input_layer == "conv2d6": | |
self.embed = Conv2dSubsampling6(idim, attention_dim, dropout_rate) | |
self.conv_subsampling_factor = 6 | |
elif input_layer == "conv2d8": | |
self.embed = Conv2dSubsampling8(idim, attention_dim, dropout_rate) | |
self.conv_subsampling_factor = 8 | |
elif input_layer == "embed": | |
self.embed = torch.nn.Sequential( | |
torch.nn.Embedding(idim, attention_dim, padding_idx=padding_idx), | |
pos_enc_class(attention_dim, positional_dropout_rate), | |
) | |
elif isinstance(input_layer, torch.nn.Module): | |
self.embed = torch.nn.Sequential( | |
input_layer, | |
pos_enc_class(attention_dim, positional_dropout_rate), | |
) | |
elif input_layer is None: | |
self.embed = torch.nn.Sequential( | |
pos_enc_class(attention_dim, positional_dropout_rate) | |
) | |
else: | |
raise ValueError("unknown input_layer: " + input_layer) | |
self.normalize_before = normalize_before | |
positionwise_layer, positionwise_layer_args = self.get_positionwise_layer( | |
positionwise_layer_type, | |
attention_dim, | |
linear_units, | |
dropout_rate, | |
positionwise_conv_kernel_size, | |
) | |
if selfattention_layer_type in [ | |
"selfattn", | |
"rel_selfattn", | |
"legacy_rel_selfattn", | |
]: | |
logging.info("encoder self-attention layer type = self-attention") | |
encoder_selfattn_layer = MultiHeadedAttention | |
encoder_selfattn_layer_args = [ | |
( | |
attention_heads, | |
attention_dim, | |
attention_dropout_rate, | |
) | |
] * num_blocks | |
elif selfattention_layer_type == "lightconv": | |
logging.info("encoder self-attention layer type = lightweight convolution") | |
encoder_selfattn_layer = LightweightConvolution | |
encoder_selfattn_layer_args = [ | |
( | |
conv_wshare, | |
attention_dim, | |
attention_dropout_rate, | |
int(conv_kernel_length.split("_")[lnum]), | |
False, | |
conv_usebias, | |
) | |
for lnum in range(num_blocks) | |
] | |
elif selfattention_layer_type == "lightconv2d": | |
logging.info( | |
"encoder self-attention layer " | |
"type = lightweight convolution 2-dimensional" | |
) | |
encoder_selfattn_layer = LightweightConvolution2D | |
encoder_selfattn_layer_args = [ | |
( | |
conv_wshare, | |
attention_dim, | |
attention_dropout_rate, | |
int(conv_kernel_length.split("_")[lnum]), | |
False, | |
conv_usebias, | |
) | |
for lnum in range(num_blocks) | |
] | |
elif selfattention_layer_type == "dynamicconv": | |
logging.info("encoder self-attention layer type = dynamic convolution") | |
encoder_selfattn_layer = DynamicConvolution | |
encoder_selfattn_layer_args = [ | |
( | |
conv_wshare, | |
attention_dim, | |
attention_dropout_rate, | |
int(conv_kernel_length.split("_")[lnum]), | |
False, | |
conv_usebias, | |
) | |
for lnum in range(num_blocks) | |
] | |
elif selfattention_layer_type == "dynamicconv2d": | |
logging.info( | |
"encoder self-attention layer type = dynamic convolution 2-dimensional" | |
) | |
encoder_selfattn_layer = DynamicConvolution2D | |
encoder_selfattn_layer_args = [ | |
( | |
conv_wshare, | |
attention_dim, | |
attention_dropout_rate, | |
int(conv_kernel_length.split("_")[lnum]), | |
False, | |
conv_usebias, | |
) | |
for lnum in range(num_blocks) | |
] | |
else: | |
raise NotImplementedError(selfattention_layer_type) | |
self.encoders = repeat( | |
num_blocks, | |
lambda lnum: EncoderLayer( | |
attention_dim, | |
encoder_selfattn_layer(*encoder_selfattn_layer_args[lnum]), | |
positionwise_layer(*positionwise_layer_args), | |
dropout_rate, | |
normalize_before, | |
concat_after, | |
stochastic_depth_rate * float(1 + lnum) / num_blocks, | |
), | |
) | |
if self.normalize_before: | |
self.after_norm = LayerNorm(attention_dim) | |
self.intermediate_layers = intermediate_layers | |
self.use_conditioning = True if ctc_softmax is not None else False | |
if self.use_conditioning: | |
self.ctc_softmax = ctc_softmax | |
self.conditioning_layer = torch.nn.Linear( | |
conditioning_layer_dim, attention_dim | |
) | |
def get_positionwise_layer( | |
self, | |
positionwise_layer_type="linear", | |
attention_dim=256, | |
linear_units=2048, | |
dropout_rate=0.1, | |
positionwise_conv_kernel_size=1, | |
): | |
"""Define positionwise layer.""" | |
if positionwise_layer_type == "linear": | |
positionwise_layer = PositionwiseFeedForward | |
positionwise_layer_args = (attention_dim, linear_units, dropout_rate) | |
elif positionwise_layer_type == "conv1d": | |
positionwise_layer = MultiLayeredConv1d | |
positionwise_layer_args = ( | |
attention_dim, | |
linear_units, | |
positionwise_conv_kernel_size, | |
dropout_rate, | |
) | |
elif positionwise_layer_type == "conv1d-linear": | |
positionwise_layer = Conv1dLinear | |
positionwise_layer_args = ( | |
attention_dim, | |
linear_units, | |
positionwise_conv_kernel_size, | |
dropout_rate, | |
) | |
else: | |
raise NotImplementedError("Support only linear or conv1d.") | |
return positionwise_layer, positionwise_layer_args | |
def forward(self, xs, masks): | |
"""Encode input sequence. | |
Args: | |
xs (torch.Tensor): Input tensor (#batch, time, idim). | |
masks (torch.Tensor): Mask tensor (#batch, time). | |
Returns: | |
torch.Tensor: Output tensor (#batch, time, attention_dim). | |
torch.Tensor: Mask tensor (#batch, time). | |
""" | |
if isinstance( | |
self.embed, | |
(Conv2dSubsampling, Conv2dSubsampling6, Conv2dSubsampling8), | |
): | |
xs, masks = self.embed(xs, masks) | |
else: | |
xs = self.embed(xs) | |
if self.intermediate_layers is None: | |
xs, masks = self.encoders(xs, masks) | |
else: | |
intermediate_outputs = [] | |
for layer_idx, encoder_layer in enumerate(self.encoders): | |
xs, masks = encoder_layer(xs, masks) | |
if ( | |
self.intermediate_layers is not None | |
and layer_idx + 1 in self.intermediate_layers | |
): | |
encoder_output = xs | |
# intermediate branches also require normalization. | |
if self.normalize_before: | |
encoder_output = self.after_norm(encoder_output) | |
intermediate_outputs.append(encoder_output) | |
if self.use_conditioning: | |
intermediate_result = self.ctc_softmax(encoder_output) | |
xs = xs + self.conditioning_layer(intermediate_result) | |
if self.normalize_before: | |
xs = self.after_norm(xs) | |
if self.intermediate_layers is not None: | |
return xs, masks, intermediate_outputs | |
return xs, masks | |
def forward_one_step(self, xs, masks, cache=None): | |
"""Encode input frame. | |
Args: | |
xs (torch.Tensor): Input tensor. | |
masks (torch.Tensor): Mask tensor. | |
cache (List[torch.Tensor]): List of cache tensors. | |
Returns: | |
torch.Tensor: Output tensor. | |
torch.Tensor: Mask tensor. | |
List[torch.Tensor]: List of new cache tensors. | |
""" | |
if isinstance(self.embed, Conv2dSubsampling): | |
xs, masks = self.embed(xs, masks) | |
else: | |
xs = self.embed(xs) | |
if cache is None: | |
cache = [None for _ in range(len(self.encoders))] | |
new_cache = [] | |
for c, e in zip(cache, self.encoders): | |
xs, masks = e(xs, masks, cache=c) | |
new_cache.append(xs) | |
if self.normalize_before: | |
xs = self.after_norm(xs) | |
return xs, masks, new_cache | |