Spaces:
Running
Running
import logging | |
import os | |
import shutil | |
from multiprocessing import Pool | |
import kaldiio | |
import numpy as np | |
import librosa | |
import torch.distributed as dist | |
import torchaudio | |
def filter_wav_text(data_dir, dataset): | |
wav_file = os.path.join(data_dir, dataset, "wav.scp") | |
text_file = os.path.join(data_dir, dataset, "text") | |
with open(wav_file) as f_wav, open(text_file) as f_text: | |
wav_lines = f_wav.readlines() | |
text_lines = f_text.readlines() | |
os.rename(wav_file, "{}.bak".format(wav_file)) | |
os.rename(text_file, "{}.bak".format(text_file)) | |
wav_dict = {} | |
for line in wav_lines: | |
parts = line.strip().split() | |
if len(parts) < 2: | |
continue | |
wav_dict[parts[0]] = parts[1] | |
text_dict = {} | |
for line in text_lines: | |
parts = line.strip().split() | |
if len(parts) < 2: | |
continue | |
text_dict[parts[0]] = " ".join(parts[1:]) | |
filter_count = 0 | |
with open(wav_file, "w") as f_wav, open(text_file, "w") as f_text: | |
for sample_name, wav_path in wav_dict.items(): | |
if sample_name in text_dict.keys(): | |
f_wav.write(sample_name + " " + wav_path + "\n") | |
f_text.write(sample_name + " " + text_dict[sample_name] + "\n") | |
else: | |
filter_count += 1 | |
logging.info( | |
"{}/{} samples in {} are filtered because of the mismatch between wav.scp and text".format( | |
filter_count, len(wav_lines), dataset | |
) | |
) | |
def wav2num_frame(wav_path, frontend_conf): | |
try: | |
waveform, sampling_rate = torchaudio.load(wav_path) | |
except: | |
waveform, sampling_rate = librosa.load(wav_path) | |
waveform = np.expand_dims(waveform, axis=0) | |
n_frames = (waveform.shape[1] * 1000.0) / ( | |
sampling_rate * frontend_conf["frame_shift"] * frontend_conf["lfr_n"] | |
) | |
feature_dim = frontend_conf["n_mels"] * frontend_conf["lfr_m"] | |
return n_frames, feature_dim | |
def calc_shape_core(root_path, args, idx): | |
file_name = args.data_file_names.split(",")[0] | |
data_name = args.dataset_conf.get("data_names", "speech,text").split(",")[0] | |
scp_file = os.path.join(root_path, "{}.{}".format(file_name, idx)) | |
shape_file = os.path.join(root_path, "{}_shape.{}".format(data_name, idx)) | |
with open(scp_file) as f: | |
lines = f.readlines() | |
data_type = args.dataset_conf.get("data_types", "sound,text").split(",")[0] | |
if data_type == "sound": | |
frontend_conf = args.frontend_conf | |
dataset_conf = args.dataset_conf | |
length_min = ( | |
dataset_conf.speech_length_min | |
if hasattr(dataset_conf, "{}_length_min".format(data_name)) | |
else -1 | |
) | |
length_max = ( | |
dataset_conf.speech_length_max | |
if hasattr(dataset_conf, "{}_length_max".format(data_name)) | |
else -1 | |
) | |
with open(shape_file, "w") as f: | |
for line in lines: | |
sample_name, wav_path = line.strip().split() | |
n_frames, feature_dim = wav2num_frame(wav_path, frontend_conf) | |
write_flag = True | |
if n_frames > 0 and length_min > 0: | |
write_flag = n_frames >= length_min | |
if n_frames > 0 and length_max > 0: | |
write_flag = n_frames <= length_max | |
if write_flag: | |
f.write( | |
"{} {},{}\n".format( | |
sample_name, | |
str(int(np.ceil(n_frames))), | |
str(int(feature_dim)), | |
) | |
) | |
f.flush() | |
elif data_type == "kaldi_ark": | |
dataset_conf = args.dataset_conf | |
length_min = ( | |
dataset_conf.speech_length_min | |
if hasattr(dataset_conf, "{}_length_min".format(data_name)) | |
else -1 | |
) | |
length_max = ( | |
dataset_conf.speech_length_max | |
if hasattr(dataset_conf, "{}_length_max".format(data_name)) | |
else -1 | |
) | |
with open(shape_file, "w") as f: | |
for line in lines: | |
sample_name, feature_path = line.strip().split() | |
feature = kaldiio.load_mat(feature_path) | |
n_frames, feature_dim = feature.shape | |
write_flag = True | |
if n_frames > 0 and length_min > 0: | |
write_flag = n_frames >= length_min | |
if n_frames > 0 and length_max > 0: | |
write_flag = n_frames <= length_max | |
if write_flag: | |
f.write( | |
"{} {},{}\n".format( | |
sample_name, | |
str(int(np.ceil(n_frames))), | |
str(int(feature_dim)), | |
) | |
) | |
f.flush() | |
elif data_type == "text": | |
with open(shape_file, "w") as f: | |
for line in lines: | |
sample_name, text = line.strip().split(maxsplit=1) | |
n_tokens = len(text.split()) | |
f.write("{} {}\n".format(sample_name, str(int(np.ceil(n_tokens))))) | |
f.flush() | |
else: | |
raise RuntimeError("Unsupported data_type: {}".format(data_type)) | |
def calc_shape(args, dataset, nj=64): | |
data_name = args.dataset_conf.get("data_names", "speech,text").split(",")[0] | |
shape_path = os.path.join(args.data_dir, dataset, "{}_shape".format(data_name)) | |
if os.path.exists(shape_path): | |
logging.info("Shape file for small dataset already exists.") | |
return | |
split_shape_path = os.path.join( | |
args.data_dir, dataset, "{}_shape_files".format(data_name) | |
) | |
if os.path.exists(split_shape_path): | |
shutil.rmtree(split_shape_path) | |
os.mkdir(split_shape_path) | |
# split | |
file_name = args.data_file_names.split(",")[0] | |
scp_file = os.path.join(args.data_dir, dataset, file_name) | |
with open(scp_file) as f: | |
lines = f.readlines() | |
num_lines = len(lines) | |
num_job_lines = num_lines // nj | |
start = 0 | |
for i in range(nj): | |
end = start + num_job_lines | |
file = os.path.join(split_shape_path, "{}.{}".format(file_name, str(i + 1))) | |
with open(file, "w") as f: | |
if i == nj - 1: | |
f.writelines(lines[start:]) | |
else: | |
f.writelines(lines[start:end]) | |
start = end | |
p = Pool(nj) | |
for i in range(nj): | |
p.apply_async(calc_shape_core, args=(split_shape_path, args, str(i + 1))) | |
logging.info("Generating shape files, please wait a few minutes...") | |
p.close() | |
p.join() | |
# combine | |
with open(shape_path, "w") as f: | |
for i in range(nj): | |
job_file = os.path.join( | |
split_shape_path, "{}_shape.{}".format(data_name, str(i + 1)) | |
) | |
with open(job_file) as job_f: | |
lines = job_f.readlines() | |
f.writelines(lines) | |
logging.info("Generating shape files done.") | |
def generate_data_list(args, data_dir, dataset, nj=64): | |
data_names = args.dataset_conf.get("data_names", "speech,text").split(",") | |
file_names = args.data_file_names.split(",") | |
concat_data_name = "_".join(data_names) | |
list_file = os.path.join(data_dir, dataset, "{}_data.list".format(concat_data_name)) | |
if os.path.exists(list_file): | |
logging.info("Data list for large dataset already exists.") | |
return | |
split_path = os.path.join(data_dir, dataset, "split") | |
if os.path.exists(split_path): | |
shutil.rmtree(split_path) | |
os.mkdir(split_path) | |
data_lines_list = [] | |
for file_name in file_names: | |
with open(os.path.join(data_dir, dataset, file_name)) as f: | |
lines = f.readlines() | |
data_lines_list.append(lines) | |
num_lines = len(data_lines_list[0]) | |
num_job_lines = num_lines // nj | |
start = 0 | |
for i in range(nj): | |
end = start + num_job_lines | |
split_path_nj = os.path.join(split_path, str(i + 1)) | |
os.mkdir(split_path_nj) | |
for file_id, file_name in enumerate(file_names): | |
file = os.path.join(split_path_nj, file_name) | |
with open(file, "w") as f: | |
if i == nj - 1: | |
f.writelines(data_lines_list[file_id][start:]) | |
else: | |
f.writelines(data_lines_list[file_id][start:end]) | |
start = end | |
with open(list_file, "w") as f_data: | |
for i in range(nj): | |
path = "" | |
for file_name in file_names: | |
path = path + " " + os.path.join(split_path, str(i + 1), file_name) | |
f_data.write(path + "\n") | |
def prepare_data(args, distributed_option): | |
data_names = args.dataset_conf.get("data_names", "speech,text").split(",") | |
data_types = args.dataset_conf.get("data_types", "sound,text").split(",") | |
file_names = args.data_file_names.split(",") | |
batch_type = args.dataset_conf["batch_conf"]["batch_type"] | |
print( | |
"data_names: {}, data_types: {}, file_names: {}".format( | |
data_names, data_types, file_names | |
) | |
) | |
assert len(data_names) == len(data_types) == len(file_names) | |
if args.dataset_type == "small": | |
args.train_shape_file = [ | |
os.path.join( | |
args.data_dir, args.train_set, "{}_shape".format(data_names[0]) | |
) | |
] | |
args.valid_shape_file = [ | |
os.path.join( | |
args.data_dir, args.valid_set, "{}_shape".format(data_names[0]) | |
) | |
] | |
( | |
args.train_data_path_and_name_and_type, | |
args.valid_data_path_and_name_and_type, | |
) = ([], []) | |
for file_name, data_name, data_type in zip(file_names, data_names, data_types): | |
args.train_data_path_and_name_and_type.append( | |
[ | |
"{}/{}/{}".format(args.data_dir, args.train_set, file_name), | |
data_name, | |
data_type, | |
] | |
) | |
args.valid_data_path_and_name_and_type.append( | |
[ | |
"{}/{}/{}".format(args.data_dir, args.valid_set, file_name), | |
data_name, | |
data_type, | |
] | |
) | |
if os.path.exists(args.train_shape_file[0]): | |
assert os.path.exists(args.valid_shape_file[0]) | |
print("shape file for small dataset already exists.") | |
return | |
else: | |
concat_data_name = "_".join(data_names) | |
args.train_data_file = os.path.join( | |
args.data_dir, args.train_set, "{}_data.list".format(concat_data_name) | |
) | |
args.valid_data_file = os.path.join( | |
args.data_dir, args.valid_set, "{}_data.list".format(concat_data_name) | |
) | |
if os.path.exists(args.train_data_file): | |
assert os.path.exists(args.valid_data_file) | |
print("data list for large dataset already exists.") | |
return | |
distributed = distributed_option.distributed | |
if not distributed or distributed_option.dist_rank == 0: | |
if hasattr(args, "filter_input") and args.filter_input: | |
filter_wav_text(args.data_dir, args.train_set) | |
filter_wav_text(args.data_dir, args.valid_set) | |
if args.dataset_type == "small" and batch_type != "unsorted": | |
calc_shape(args, args.train_set) | |
calc_shape(args, args.valid_set) | |
if args.dataset_type == "large": | |
generate_data_list(args, args.data_dir, args.train_set) | |
generate_data_list(args, args.data_dir, args.valid_set) | |
if distributed: | |
dist.barrier() | |