Step-Audio / funasr_detach /utils /prepare_data.py
martin
initial
67c46fd
raw
history blame
11.7 kB
import logging
import os
import shutil
from multiprocessing import Pool
import kaldiio
import numpy as np
import librosa
import torch.distributed as dist
import torchaudio
def filter_wav_text(data_dir, dataset):
wav_file = os.path.join(data_dir, dataset, "wav.scp")
text_file = os.path.join(data_dir, dataset, "text")
with open(wav_file) as f_wav, open(text_file) as f_text:
wav_lines = f_wav.readlines()
text_lines = f_text.readlines()
os.rename(wav_file, "{}.bak".format(wav_file))
os.rename(text_file, "{}.bak".format(text_file))
wav_dict = {}
for line in wav_lines:
parts = line.strip().split()
if len(parts) < 2:
continue
wav_dict[parts[0]] = parts[1]
text_dict = {}
for line in text_lines:
parts = line.strip().split()
if len(parts) < 2:
continue
text_dict[parts[0]] = " ".join(parts[1:])
filter_count = 0
with open(wav_file, "w") as f_wav, open(text_file, "w") as f_text:
for sample_name, wav_path in wav_dict.items():
if sample_name in text_dict.keys():
f_wav.write(sample_name + " " + wav_path + "\n")
f_text.write(sample_name + " " + text_dict[sample_name] + "\n")
else:
filter_count += 1
logging.info(
"{}/{} samples in {} are filtered because of the mismatch between wav.scp and text".format(
filter_count, len(wav_lines), dataset
)
)
def wav2num_frame(wav_path, frontend_conf):
try:
waveform, sampling_rate = torchaudio.load(wav_path)
except:
waveform, sampling_rate = librosa.load(wav_path)
waveform = np.expand_dims(waveform, axis=0)
n_frames = (waveform.shape[1] * 1000.0) / (
sampling_rate * frontend_conf["frame_shift"] * frontend_conf["lfr_n"]
)
feature_dim = frontend_conf["n_mels"] * frontend_conf["lfr_m"]
return n_frames, feature_dim
def calc_shape_core(root_path, args, idx):
file_name = args.data_file_names.split(",")[0]
data_name = args.dataset_conf.get("data_names", "speech,text").split(",")[0]
scp_file = os.path.join(root_path, "{}.{}".format(file_name, idx))
shape_file = os.path.join(root_path, "{}_shape.{}".format(data_name, idx))
with open(scp_file) as f:
lines = f.readlines()
data_type = args.dataset_conf.get("data_types", "sound,text").split(",")[0]
if data_type == "sound":
frontend_conf = args.frontend_conf
dataset_conf = args.dataset_conf
length_min = (
dataset_conf.speech_length_min
if hasattr(dataset_conf, "{}_length_min".format(data_name))
else -1
)
length_max = (
dataset_conf.speech_length_max
if hasattr(dataset_conf, "{}_length_max".format(data_name))
else -1
)
with open(shape_file, "w") as f:
for line in lines:
sample_name, wav_path = line.strip().split()
n_frames, feature_dim = wav2num_frame(wav_path, frontend_conf)
write_flag = True
if n_frames > 0 and length_min > 0:
write_flag = n_frames >= length_min
if n_frames > 0 and length_max > 0:
write_flag = n_frames <= length_max
if write_flag:
f.write(
"{} {},{}\n".format(
sample_name,
str(int(np.ceil(n_frames))),
str(int(feature_dim)),
)
)
f.flush()
elif data_type == "kaldi_ark":
dataset_conf = args.dataset_conf
length_min = (
dataset_conf.speech_length_min
if hasattr(dataset_conf, "{}_length_min".format(data_name))
else -1
)
length_max = (
dataset_conf.speech_length_max
if hasattr(dataset_conf, "{}_length_max".format(data_name))
else -1
)
with open(shape_file, "w") as f:
for line in lines:
sample_name, feature_path = line.strip().split()
feature = kaldiio.load_mat(feature_path)
n_frames, feature_dim = feature.shape
write_flag = True
if n_frames > 0 and length_min > 0:
write_flag = n_frames >= length_min
if n_frames > 0 and length_max > 0:
write_flag = n_frames <= length_max
if write_flag:
f.write(
"{} {},{}\n".format(
sample_name,
str(int(np.ceil(n_frames))),
str(int(feature_dim)),
)
)
f.flush()
elif data_type == "text":
with open(shape_file, "w") as f:
for line in lines:
sample_name, text = line.strip().split(maxsplit=1)
n_tokens = len(text.split())
f.write("{} {}\n".format(sample_name, str(int(np.ceil(n_tokens)))))
f.flush()
else:
raise RuntimeError("Unsupported data_type: {}".format(data_type))
def calc_shape(args, dataset, nj=64):
data_name = args.dataset_conf.get("data_names", "speech,text").split(",")[0]
shape_path = os.path.join(args.data_dir, dataset, "{}_shape".format(data_name))
if os.path.exists(shape_path):
logging.info("Shape file for small dataset already exists.")
return
split_shape_path = os.path.join(
args.data_dir, dataset, "{}_shape_files".format(data_name)
)
if os.path.exists(split_shape_path):
shutil.rmtree(split_shape_path)
os.mkdir(split_shape_path)
# split
file_name = args.data_file_names.split(",")[0]
scp_file = os.path.join(args.data_dir, dataset, file_name)
with open(scp_file) as f:
lines = f.readlines()
num_lines = len(lines)
num_job_lines = num_lines // nj
start = 0
for i in range(nj):
end = start + num_job_lines
file = os.path.join(split_shape_path, "{}.{}".format(file_name, str(i + 1)))
with open(file, "w") as f:
if i == nj - 1:
f.writelines(lines[start:])
else:
f.writelines(lines[start:end])
start = end
p = Pool(nj)
for i in range(nj):
p.apply_async(calc_shape_core, args=(split_shape_path, args, str(i + 1)))
logging.info("Generating shape files, please wait a few minutes...")
p.close()
p.join()
# combine
with open(shape_path, "w") as f:
for i in range(nj):
job_file = os.path.join(
split_shape_path, "{}_shape.{}".format(data_name, str(i + 1))
)
with open(job_file) as job_f:
lines = job_f.readlines()
f.writelines(lines)
logging.info("Generating shape files done.")
def generate_data_list(args, data_dir, dataset, nj=64):
data_names = args.dataset_conf.get("data_names", "speech,text").split(",")
file_names = args.data_file_names.split(",")
concat_data_name = "_".join(data_names)
list_file = os.path.join(data_dir, dataset, "{}_data.list".format(concat_data_name))
if os.path.exists(list_file):
logging.info("Data list for large dataset already exists.")
return
split_path = os.path.join(data_dir, dataset, "split")
if os.path.exists(split_path):
shutil.rmtree(split_path)
os.mkdir(split_path)
data_lines_list = []
for file_name in file_names:
with open(os.path.join(data_dir, dataset, file_name)) as f:
lines = f.readlines()
data_lines_list.append(lines)
num_lines = len(data_lines_list[0])
num_job_lines = num_lines // nj
start = 0
for i in range(nj):
end = start + num_job_lines
split_path_nj = os.path.join(split_path, str(i + 1))
os.mkdir(split_path_nj)
for file_id, file_name in enumerate(file_names):
file = os.path.join(split_path_nj, file_name)
with open(file, "w") as f:
if i == nj - 1:
f.writelines(data_lines_list[file_id][start:])
else:
f.writelines(data_lines_list[file_id][start:end])
start = end
with open(list_file, "w") as f_data:
for i in range(nj):
path = ""
for file_name in file_names:
path = path + " " + os.path.join(split_path, str(i + 1), file_name)
f_data.write(path + "\n")
def prepare_data(args, distributed_option):
data_names = args.dataset_conf.get("data_names", "speech,text").split(",")
data_types = args.dataset_conf.get("data_types", "sound,text").split(",")
file_names = args.data_file_names.split(",")
batch_type = args.dataset_conf["batch_conf"]["batch_type"]
print(
"data_names: {}, data_types: {}, file_names: {}".format(
data_names, data_types, file_names
)
)
assert len(data_names) == len(data_types) == len(file_names)
if args.dataset_type == "small":
args.train_shape_file = [
os.path.join(
args.data_dir, args.train_set, "{}_shape".format(data_names[0])
)
]
args.valid_shape_file = [
os.path.join(
args.data_dir, args.valid_set, "{}_shape".format(data_names[0])
)
]
(
args.train_data_path_and_name_and_type,
args.valid_data_path_and_name_and_type,
) = ([], [])
for file_name, data_name, data_type in zip(file_names, data_names, data_types):
args.train_data_path_and_name_and_type.append(
[
"{}/{}/{}".format(args.data_dir, args.train_set, file_name),
data_name,
data_type,
]
)
args.valid_data_path_and_name_and_type.append(
[
"{}/{}/{}".format(args.data_dir, args.valid_set, file_name),
data_name,
data_type,
]
)
if os.path.exists(args.train_shape_file[0]):
assert os.path.exists(args.valid_shape_file[0])
print("shape file for small dataset already exists.")
return
else:
concat_data_name = "_".join(data_names)
args.train_data_file = os.path.join(
args.data_dir, args.train_set, "{}_data.list".format(concat_data_name)
)
args.valid_data_file = os.path.join(
args.data_dir, args.valid_set, "{}_data.list".format(concat_data_name)
)
if os.path.exists(args.train_data_file):
assert os.path.exists(args.valid_data_file)
print("data list for large dataset already exists.")
return
distributed = distributed_option.distributed
if not distributed or distributed_option.dist_rank == 0:
if hasattr(args, "filter_input") and args.filter_input:
filter_wav_text(args.data_dir, args.train_set)
filter_wav_text(args.data_dir, args.valid_set)
if args.dataset_type == "small" and batch_type != "unsorted":
calc_shape(args, args.train_set)
calc_shape(args, args.valid_set)
if args.dataset_type == "large":
generate_data_list(args, args.data_dir, args.train_set)
generate_data_list(args, args.data_dir, args.valid_set)
if distributed:
dist.barrier()