Spaces:
Sleeping
Sleeping
File size: 5,981 Bytes
6cbdb33 fa451c0 6cbdb33 0a7a112 fa451c0 9214cb3 0a7a112 6cbdb33 fa451c0 6cbdb33 9214cb3 fa451c0 6cbdb33 0a7a112 9214cb3 0a7a112 5879c43 0a7a112 9214cb3 5879c43 fa451c0 6cbdb33 0cdd188 6cbdb33 d959c89 6cbdb33 fa451c0 6cbdb33 5879c43 6cbdb33 d959c89 6cbdb33 fa451c0 6cbdb33 fa451c0 6cbdb33 fa451c0 6cbdb33 fa451c0 6cbdb33 fa451c0 6cbdb33 fa451c0 6cbdb33 fa451c0 6cbdb33 fa451c0 6cbdb33 9214cb3 5879c43 9214cb3 0a7a112 601b056 f4217e0 d959c89 f4217e0 d959c89 f4217e0 601b056 e13b398 601b056 9214cb3 5879c43 601b056 9214cb3 f4217e0 601b056 0a7a112 9214cb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import gradio as gr
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
import re
from datasets import load_dataset
import random
import logging
import os
import autopep8
import textwrap
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Define the model options
gguf_models = {
"Q8_0 (8-bit)": "leetmonkey_peft__q8_0.gguf",
"Exact Copy": "leetmonkey_peft_exact_copy.gguf",
"F16": "leetmonkey_peft_f16.gguf",
"Super Block Q6": "leetmonkey_peft_super_block_q6.gguf"
}
def download_model(model_name):
logger.info(f"Downloading model: {model_name}")
model_path = hf_hub_download(
repo_id="sugiv/leetmonkey-peft-gguf",
filename=model_name,
cache_dir="./models",
force_download=True,
resume_download=True
)
logger.info(f"Model downloaded: {model_path}")
return model_path
# Download and load the 8-bit model at startup
q8_model_path = download_model(gguf_models["Q8_0 (8-bit)"])
llm = Llama(
model_path=q8_model_path,
n_ctx=2048,
n_threads=4,
n_gpu_layers=0,
verbose=False
)
logger.info("8-bit model loaded successfully")
# Load the dataset
dataset = load_dataset("sugiv/leetmonkey_python_dataset")
train_dataset = dataset["train"]
# Generation parameters
generation_kwargs = {
"max_tokens": 2048,
"stop": ["```", "### Instruction:", "### Response:"],
"echo": False,
"temperature": 0.2,
"top_k": 50,
"top_p": 0.95,
"repeat_penalty": 1.1
}
def generate_solution(instruction, model):
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
full_prompt = f"""### Instruction:
{system_prompt}
Implement the following function for the LeetCode problem:
{instruction}
### Response:
Here's the complete Python function implementation:
```python
"""
response = model(full_prompt, **generation_kwargs)
return response["choices"][0]["text"]
def extract_and_format_code(text):
# Extract code between triple backticks
code_match = re.search(r'```python\s*(.*?)\s*```', text, re.DOTALL)
if code_match:
code = code_match.group(1)
else:
code = text
# Remove any text before the function definition
code = re.sub(r'^.*?(?=def\s+\w+\s*\()', '', code, flags=re.DOTALL)
# Dedent the code to remove any common leading whitespace
code = textwrap.dedent(code)
# Split the code into lines
lines = code.split('\n')
# Find the function definition line
func_def_index = next((i for i, line in enumerate(lines) if line.strip().startswith('def ')), 0)
# Ensure proper indentation
indented_lines = [lines[func_def_index]] # Keep the function definition as is
for line in lines[func_def_index + 1:]:
if line.strip(): # If the line is not empty
indented_lines.append(' ' + line) # Add 4 spaces of indentation
else:
indented_lines.append(line) # Keep empty lines as is
formatted_code = '\n'.join(indented_lines)
try:
return autopep8.fix_code(formatted_code)
except:
return formatted_code
def select_random_problem():
return random.choice(train_dataset)['instruction']
def update_solution(problem, model_name):
if model_name == "Q8_0 (8-bit)":
model = llm
else:
model_path = download_model(gguf_models[model_name])
model = Llama(model_path=model_path, n_ctx=2048, n_threads=4, n_gpu_layers=0, verbose=False)
logger.info(f"Generating solution using {model_name} model")
generated_output = generate_solution(problem, model)
formatted_code = extract_and_format_code(generated_output)
logger.info("Solution generated successfully")
return formatted_code
def stream_solution(problem, model_name):
if model_name == "Q8_0 (8-bit)":
model = llm
else:
model_path = download_model(gguf_models[model_name])
model = Llama(model_path=model_path, n_ctx=2048, n_threads=4, n_gpu_layers=0, verbose=False)
logger.info(f"Generating solution using {model_name} model")
system_prompt = "You are a Python coding assistant specialized in solving LeetCode problems. Provide only the complete implementation of the given function. Ensure proper indentation and formatting. Do not include any explanations or multiple solutions."
full_prompt = f"""### Instruction:
{system_prompt}
Implement the following function for the LeetCode problem:
{problem}
### Response:
Here's the complete Python function implementation:
```python
"""
generated_text = ""
for chunk in model(full_prompt, stream=True, **generation_kwargs):
token = chunk["choices"][0]["text"]
generated_text += token
yield generated_text
formatted_code = extract_and_format_code(generated_text)
logger.info("Solution generated successfully")
yield formatted_code
with gr.Blocks() as demo:
gr.Markdown("# LeetCode Problem Solver")
with gr.Row():
with gr.Column():
problem_display = gr.Textbox(label="LeetCode Problem", lines=10)
select_problem_btn = gr.Button("Select Random Problem")
with gr.Column():
model_dropdown = gr.Dropdown(choices=list(gguf_models.keys()), label="Select GGUF Model", value="Q8_0 (8-bit)")
solution_display = gr.Code(label="Generated Solution", language="python", lines=25)
generate_btn = gr.Button("Generate Solution")
select_problem_btn.click(select_random_problem, outputs=problem_display)
generate_btn.click(stream_solution, inputs=[problem_display, model_dropdown], outputs=solution_display)
if __name__ == "__main__":
logger.info("Starting Gradio interface")
demo.launch(share=True)
|